화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.30, No.4, 504-508, August, 2019
집광 조건에서의 GaInP/AlGaInP 이종접합 구조 태양전지 특성 연구
Study on the Characteristics of GaInP/AlGaInP Heterojunction Photovoltaic Cells under Concentrated Illumination
초록
GaInP/AlGaInP 이종접합 구조를 제안하고 집광 조건에서 가장 높은 효율을 달성한 III-V 화합물 반도체 다중접합 태양전지의 맨 위 subcell에 주로 사용되는 GaInP 동종접합 구조를 대체해 이종접합 구조가 응용될 가능성에 대하여 조사하였다. 2° off 된 웨이퍼와 10° off 된 서로 다른 off-cut 방향을 갖는 두 종류의 GaAs 기판 위에 성장된 태양전지의 특성을 집광 조건에서 측정하고 비교하였다. 10° off 된 태양전지에서 더 높은 단락전류와 변환효율을 얻었다. 1 sun 조건에서 10° off 된 기판 위에 제작된 2 × 2 mm2 면적의 태양전지에서 9.21 mA/cm2의 단락전류밀도와 1.38 V의 개방전압이 측정되었다. 10° off 기판 위에 제작된 5 × 5 mm2 태양전지에서 집광도 증가에 따라 곡선인자(fiill factor)가 감소하여 변환효율은 6.03% (1 sun)에서 5.28% (20 sun)로 측정되었다.
The feasibility of replacing the tope cell of pn GaInP homojunction with our GaInP/AlGaInP heterojunction structure in III-V semiconductor multijunction photovoltaic (MJPV) cells having the highest current conversion efficiency was investigated. The performance of photovoltaic (PV) cells grown on 2° and 10° off-oriented GaAs substrates were compared to each other. The PV cells on the 10° off-cut substrate showed higher short-circuit current density (Jsc) and conversion efficiency values than that of using the 2° one. For 2 × 2 mm2 area PV cell on 10° off substrate, the Jsc of 9.21 mA/cm2 and the open-circuit voltage of 1.38 V were measured under 1 sun illumination. For 5 × 5 mm2 cell on 10° off substrate, the conversion efficiency was decreased from 6.03% (1 sun) to 5.28% (20 sun) due to a decrease in fiill factor (FF).
  1. Liu M, Kinsey GS, Bagienski W, Nayak A, Garboushian V, IEEE J. Photovolt., 3(2), 888 (2013)
  2. Sato D, Lee KH, Araki K, Yamaguchi M, Yamada N, IEEE J. Photovolt., 9(1), 147 (2019)
  3. Wiesenfarth M, Anton I, Bett AW, Appl. Phys. Rev., 5(4), 041601 (2018)
  4. Jeong Y, Park DW, Lee JK, Lee J, App. Chem. Eng., 26(5), 526 (2015)
  5. Steiner M, Siefer G, Schmidt T, Wiesenfarth M, Dimroth F, Bett AW, IEEE J. Photovolt., 6(4), 1020 (2016)
  6. France RM, Geisz JF, Garcia I, Steiner MA, McMahon WE, et al., IEEE J. Photovolt., 5(1), 432 (2015)
  7. France RM, Garcia I, McMahon WE, Norman AG, Simon J, Geisz JF, Friedman DJ, Romero MJ, IEEE J. Photovolt., 4(1), 190 (2014)
  8. France RM, Geisz JF, Steiner MA, To B, Romero MJ, Olavarria WJ, King RR, J. Appl. Phys., 111(10), 103528 (2012)
  9. Dimroth F, Grave M, Beutel P, Fiedeler U, Karcher C, et al., Prog. Photovolt., 22(3), 277 (2014)
  10. Chiu PT, Law DC, Woo RL, Singer SB , Bhusari D, et al., IEEE J. Photovolt., 4(1), 493 (2014)
  11. Song S, Choi HI, Shin IS, Park SS, Lee GD, Park SH, Jin Y, Appl. Chem. Eng., 27(5), 467 (2016)
  12. Geisz JF, Steiner MA, Garcia I, Kurtz SR, Friedman DJ, Appl. Phys. Lett., 103(4), 041118 (2013)
  13. Kyu LS, Appl. Chem. Eng, 22(5), 461 (2011)
  14. Chand N, Jordan AS, Chu SNG, Geva M, Appl. Phys. Lett., 59(25), 3270 (1991)
  15. Kim JH, Shin HB, Korean J. Chem. Eng., 36(2), 305 (2019)
  16. Aiken DJ, Sol. Energy Mater. Sol. Cells, 64(4), 393 (2000)