Applied Chemistry for Engineering, Vol.30, No.4, 504-508, August, 2019
집광 조건에서의 GaInP/AlGaInP 이종접합 구조 태양전지 특성 연구
Study on the Characteristics of GaInP/AlGaInP Heterojunction Photovoltaic Cells under Concentrated Illumination
초록
GaInP/AlGaInP 이종접합 구조를 제안하고 집광 조건에서 가장 높은 효율을 달성한 III-V 화합물 반도체 다중접합 태양전지의 맨 위 subcell에 주로 사용되는 GaInP 동종접합 구조를 대체해 이종접합 구조가 응용될 가능성에 대하여 조사하였다. 2° off 된 웨이퍼와 10° off 된 서로 다른 off-cut 방향을 갖는 두 종류의 GaAs 기판 위에 성장된 태양전지의 특성을 집광 조건에서 측정하고 비교하였다. 10° off 된 태양전지에서 더 높은 단락전류와 변환효율을 얻었다. 1 sun 조건에서 10° off 된 기판 위에 제작된 2 × 2 mm2 면적의 태양전지에서 9.21 mA/cm2의 단락전류밀도와 1.38 V의 개방전압이 측정되었다. 10° off 기판 위에 제작된 5 × 5 mm2 태양전지에서 집광도 증가에 따라 곡선인자(fiill factor)가 감소하여 변환효율은 6.03% (1 sun)에서 5.28% (20 sun)로 측정되었다.
The feasibility of replacing the tope cell of pn GaInP homojunction with our GaInP/AlGaInP heterojunction structure in III-V semiconductor multijunction photovoltaic (MJPV) cells having the highest current conversion efficiency was investigated. The performance of photovoltaic (PV) cells grown on 2° and 10° off-oriented GaAs substrates were compared to each other. The PV cells on the 10° off-cut substrate showed higher short-circuit current density (Jsc) and conversion efficiency values than that of using the 2° one. For 2 × 2 mm2 area PV cell on 10° off substrate, the Jsc of 9.21 mA/cm2 and the open-circuit voltage of 1.38 V were measured under 1 sun illumination. For 5 × 5 mm2 cell on 10° off substrate, the conversion efficiency was decreased from 6.03% (1 sun) to 5.28% (20 sun) due to a decrease in fiill factor (FF).
- Liu M, Kinsey GS, Bagienski W, Nayak A, Garboushian V, IEEE J. Photovolt., 3(2), 888 (2013)
- Sato D, Lee KH, Araki K, Yamaguchi M, Yamada N, IEEE J. Photovolt., 9(1), 147 (2019)
- Wiesenfarth M, Anton I, Bett AW, Appl. Phys. Rev., 5(4), 041601 (2018)
- Jeong Y, Park DW, Lee JK, Lee J, App. Chem. Eng., 26(5), 526 (2015)
- Steiner M, Siefer G, Schmidt T, Wiesenfarth M, Dimroth F, Bett AW, IEEE J. Photovolt., 6(4), 1020 (2016)
- France RM, Geisz JF, Garcia I, Steiner MA, McMahon WE, et al., IEEE J. Photovolt., 5(1), 432 (2015)
- France RM, Garcia I, McMahon WE, Norman AG, Simon J, Geisz JF, Friedman DJ, Romero MJ, IEEE J. Photovolt., 4(1), 190 (2014)
- France RM, Geisz JF, Steiner MA, To B, Romero MJ, Olavarria WJ, King RR, J. Appl. Phys., 111(10), 103528 (2012)
- Dimroth F, Grave M, Beutel P, Fiedeler U, Karcher C, et al., Prog. Photovolt., 22(3), 277 (2014)
- Chiu PT, Law DC, Woo RL, Singer SB , Bhusari D, et al., IEEE J. Photovolt., 4(1), 493 (2014)
- Song S, Choi HI, Shin IS, Park SS, Lee GD, Park SH, Jin Y, Appl. Chem. Eng., 27(5), 467 (2016)
- Geisz JF, Steiner MA, Garcia I, Kurtz SR, Friedman DJ, Appl. Phys. Lett., 103(4), 041118 (2013)
- Kyu LS, Appl. Chem. Eng, 22(5), 461 (2011)
- Chand N, Jordan AS, Chu SNG, Geva M, Appl. Phys. Lett., 59(25), 3270 (1991)
- Kim JH, Shin HB, Korean J. Chem. Eng., 36(2), 305 (2019)
- Aiken DJ, Sol. Energy Mater. Sol. Cells, 64(4), 393 (2000)