Biochemical and Biophysical Research Communications, Vol.514, No.1, 224-230, 2019
Protein synthesis inhibition induces proteasome assembly and function
Protein synthesis and degradation balance have a crucial role in maintenance of cellular homeostasis and function. The ubiquitin-proteasome system is one of the major cellular proteolytic machineries responsible for the removal of normal, abnormal, denatured or in general damaged proteins. Proteasome is a multisubunit enzyme that consists of the 20S core and the 19S regulatory complexes giving rise to multiple active forms. In the present study we investigated the crosstalk between protein synthesis and proteasome-mediated protein degradation. Pharmacological protein synthesis inhibition led to increased proteasome function and assembly of 30S/26S proteasome complexes, in human primary embryonic fibroblasts. The enhancement in proteasome function counted for the degradation of ubiquitinated, misfolded and oxidized proteins. Additionally, it was found that heat shock proteins 70 and 90 are probably involved in the elevated proteasome assembly. Our results provide an insight on how the mechanisms of protein synthesis, protein degradation and heat shock protein chaperones machinery interact under various cellular conditions. (C) 2019 Elsevier Inc. All rights reserved.