화학공학소재연구정보센터
Biochemical and Biophysical Research Communications, Vol.514, No.1, 329-335, 2019
Tetramethylpyrazine alleviates LPS-induced inflammatory injury in HUVECs by inhibiting Rho/ROCK pathway
Endothelial dysfunction plays an important role in the pathogenesis of acute lung injury (ALI). Tetramethylpyrazine (TMP) has been reported to attenuate harmful changes in ALI rats. However, the effects of TMP on endothelial cell injury and its underlying mechanisms remain unknown. In this study, human umbilical vein endothelial cells (HUVECs) induced by lipopolysaccharide (LPS) was used as an inflammatory injury model, also served as LPS group. HUVECs pretreated with TMP for 2 h before induced by LPS was served as LPS + TMP group. Untreated HUVEC5 was served as control group. After incubation with LPS for 12 h, cell viability and morphology, cell apoptosis rate, CD31-positive endothelial microparticles (EMPs) release, proinflammatory cytokines secretion, and ROCK II expression were evaluated. Compared with LPS group, TMP pretreatment improved cell viability and morphology. Besides, cell apoptosis rate, CD31-positive EMPs amount, TNF-alpha and IL-1 beta concentrates, and ROCK II mRNA and protein levels in LPS + TMP group were significantly decreased when compared with LPS group. To further confirm the mechanism, HUVEC5 in all the above groups were pretreated with Y27632 (ROCK II inhibitor) for 30 min before grouping, then treated as above. No significant differences in cell apoptosis rate, CD31-positive EMPs amount, and ROCK II expression between Y27632 + LPS group and Y27632 + LPS + TMP group were found. To sum up, our study found that TMP alleviated LPS-induced inflammatory injury in HUVECs by inhibiting Rho/ROCK pathway. (C) 2019 Elsevier Inc. All rights reserved.