화학공학소재연구정보센터
Catalysis Today, Vol.335, 31-38, 2019
Recent progresses in the design of BiVO4-based photocatalysts for efficient solar water splitting
Photocatalysis and photoelectrocatalysis are both considered as promising routes to solve energy and environmental crises. Particularly, photoelectrochemical (PEC) water splitting has been extensively studied in the search for sustainable ways of converting solar energy into chemical energy to produce energy-dense fuel with minimal carbon footprint. Bismuth vanadate (BiVO4) has attracted a lot attention in recent years due to its visible-light activity, favorable conduction and valence band edge positions, and low-cost facile synthesis route. However, BiVO4 still suffers from low carrier separation efficiency and slow oxygen evolution kinetics on its surface. To overcome these weaknesses, various modification strategies, including nanostructural morphology control, element doping, heterostructures (particularly Z-scheme), plasmonic enhancement and surface passivation, have been proposed and implemented to improve its PEC activity. This short review summarizes the most recent advances on the designs of BiVO4-based photocatalysts and photoanodes. Some of the best-performing BiVO4-based photo-electrode structures to date are demonstrated, and the critical parameters that contribute to these outstanding performances are discussed.