Chemical Engineering Journal, Vol.374, 170-180, 2019
Degradation of organic pollutants by peroxymonosulfate activated by MnO2 with different crystalline structures: Catalytic performances and mechanisms
In this study, a novel alpha-MnO2 (OMS-2) material with long and uniform nanofibers was synthesized by morphological and phase transitions from delta-MnO2 (OL-1) under a hydrothermal reaction. We systematically investigated the catalytic performances of OMS-2 and OL-1 for the activation of PMS (peroxymonosulfate) to degrade 4-nitrophenol (4-NP) in water. According to the results from Brunauer Emmett Teller (BET), thermo gravimetric analyzer (TGA), H-2-temperature programmed reduction (H-2-TPR), cyclic voltammetry, X-ray photoelectron spectroscopy (XPS), and density-functional theory (DFT) calculation, OMS-2 has a larger BET area, more active sites, better adsorption ability, a faster electron transfer rate, and more multiple valence states of Mn than OL-1. These results also well illustrate OMS-2 has much better catalytic performance than OL-1. The results of the electron paramagnetic resonance (EPR) and the radical quantification experiments confirmed that sulfate radicals (SO4 center dot-) and hydroxyl radicals ((OH)-O-center dot) were the main oxidants and OMS-2 has better radical generation capability than OL-1. The LC-MS results indicated that there were two routes for the degradation of 4-NP and the degradation mechanism of 4-NP in the OMS-2/PMS system was similar to that in the OL-1/PMS system. Finally, we proposed the PMS activation mechanism, the formation mechanism of radicals, and the degradation mechanism of 4-NP based on the two different kinds of MnO2 with different morphologies.
Keywords:Advanced oxidation processes;Manganese dioxide;Organic pollutants;Sulfate radical;Hydroxide radical