Chemical Engineering Journal, Vol.374, 975-982, 2019
MIL-53(Fe) incorporated in the lamellar BiOBr: Promoting the visible-light catalytic capability on the degradation of rhodamine B and carbamazepine
In this work, a series of BiOBr/MIL-53(Fe) hybrid photocatalysts have prepared by a facile co-precipitation method. Rhodamine B (RhB) and carbamazepine (CBZ) were selected as the targets to evaluate the visible-light photocatalytic activity of the prepared samples. All of the hybrids exhibited better catalytic performance compared to the pristine BiOBr, and the performance of BiOBr/MIL-53 (with 20 wt% of MIL-53) was the most efficient. The excellent performance can be contributed to the incorporation of MIL-53(Fe) which not only form the heterojunction with BiOBr to inhibit the recombination of the photoinduced electron-hole pairs, but also utilize the visible light more effectively. The photocatalytic mechanism was studied, it shows that center dot OH and h(+) were both the main active species for the degradation of contaminants. Moreover, the degradation pathways of CBZ via the photocatalysis over BiOBr/MIL-53(Fe) hybrid were presented based on the determination of LC-MS/MS and the results of catalytic mechanisms. With the recent increase in reported MOFs materials, we believe a new class of hybrid catalytic materials is possible. This result is conceptually interesting as it opens the door to various MOF-based BiOBr materials for environmental purification and restoration.