Energy, Vol.180, 903-917, 2019
Energy-material nexus: The impacts of national and international energy scenarios on critical metals use in China up to 2050 and their global implications
Transition to low carbon energy system requires number of metals that are required in other sectors, have limited availability, produced mainly as byproducts in limited countries, and classified critical, which may shift energy system traditional geopolitics. China is main producer of several metals and one of their main consumers, which may have implications on their use in other sectors and in low carbon technologies in other countries. We aim at analyzing electricity generation technologies (EGT) in China, their metals requirements, and their global implications. Metals included are Ag, Te, In, Ge, Se, Ga, Cd, Nd, Dy, Pr, Tb, Pb, Cu, Ni, Al, Fe, Cr, and Zn. Dynamic material flow-stock model and seven energy scenarios are used, combined with material scenarios. Results indicates that most critical metals for energy system are Te, Cr, Ag, Ni, In, Ge, Tb, and Dy, however, technology advancements are expected to reduce risks associated with Ag, In, Dy, and Tb. Energy scenarios are difficult to realize without adequate supply of metals from primary sources, combined with increasing resources efficiency, recycling, and careful selection of technologies. Energy models used to produce these scenarios should include energy-material nexus. Biggest global implications expected for Ge, Te, Tb, and Dy. (C) 2019 Elsevier Ltd. All rights reserved.
Keywords:Energy-material nexus;Electricity generation technologies;Critical metals;Resources;Scenario analysis;China