Journal of the American Chemical Society, Vol.118, No.28, 6698-6706, 1996
Synthesis of Eta(3)-Propargyl Rhenium Complexes
Hybride abstraction from eta(2)-alkyne rhenium complexes C(5)Me(5)(CO)(2)Re(RC=CR’) (2) with Ph(3)C(+)PF(6)(-) produces eta(3)-propargyl complexes C(5)Me(5)(CO)(2)Re(eta(3)-CHR "-C=CR)(PF6-)-P-+ (3). Successful hydride abstraction to produce eta(3)-propargyl complexes was observed only for internal acetylenes with a methyl or primary alkyl substituent. an unusual regioselectivity for hydride abstraction was observed : CH3CH2>CH3 much greater than CH(CH3)(2). Hydride abstraction from diethylacetylene complex C(5)Me(5)(CO)(2)Re(eta(2)-CH3CH2C=CCH2CH3) (2c) produced a single stereoisomer of eta(3)-propargyl complex C(5)Me(5)(CO)(2)Re(eta(3)-CH3CH-C=CCH2CH3)(PF6-)-P-+ (3c) in which it is suggested that the methyl group is located in the less crowded position anti to the Cp* group. the regio- and stereoselectivity of hydride abstraction can be explained in terms of transition stat A in which the carbon hydrogen bond being cleaved is antiperiplanar with respect to rhenium and the syn propargylic substituent comes into close contact with the Cp* ligand. Protonation of C(5)Me(5)(CO)(2)Re(eta(2)-HC=CCH2OH) (6h) with HBF4-Et(2)O gave C(5)Me(5)(CO)(2)Re(eta(3)-CH2-Me(5)(CO)(2)Re(eta(2)-HC=CCH3) (2h). Protonation of propargyl alcohol complexes provides a regiospecific synthesis of pi-propargyl complexes : protonation of C(5)Me(5)(CO)(2)Re(eta(2)-CH3CH2C=CCH2OH) (6e) gave C(5)Me(5)(CO)(2)Re(eta(3)-CH2-C=CCH2CH3)(BF4-)-B-+ (3c-BF4), while protonation of C(5)Me(5)(CO)(2)Re[eta(2)-CH3C=CCH(CH3)OH] (6d) gave C-5-Me(5)(CO)(2)Re(eta(3)-CH3CH-C=CCH3)(BF4-)-B-+ (anti-ed-BF4).
Keywords:MOLECULAR-STRUCTURE;CRYSTAL-STRUCTURE;TRANSITION-METAL;REACTIVITY;PLATINUM;DIMERIZATION;ALKYLATION;CARBONATES;CHEMISTRY;MECHANISM