Inorganic Chemistry, Vol.58, No.11, 7628-7633, 2019
Doping-Induced Polymorph and Carrier Polarity Changes in Thermoelectric Ag(Bi,Sb)Se-2 Solid Solution
Silver bismuth diselenide (AgBiSe2) is an n-type thermoelectric material that exhibits a complex structural phase transition from the hexagonal to cubic phase, while silver antimony diselenide (AgSbSe2) is a p-type thermoelectric material that crystallizes in the cubic phase at all temperatures. Here, we investigate the crystal structure and thermoelectric properties of Ag(Bi,Sb)Se-2 solid solution, employing AgBi0.9Sb0.1Se2 and AgBi0.7Sb0.3Se2 as representative samples. The carrier polarity of AgBi0.9Sb0.1Se2 is converted from the n-type to p-type by Pb doping, accompanied by a polymorphic change to the cubic phase. It is difficult to obtain highly conductive p-type hexagonal AgBiSe2-based materials, although first-principles calculations predict high-performance thermoelectric properties for these systems. We also demonstrate that cubic AgBi0.7Sb0.3Se2 undergoes a polymorphic change to the hexagonal phase upon Nb doping. The present study show that polymorphic changes inevitably occurred upon Pb/Nb doping to optimize thermoelectric properties of Ag(Bi,Sb)Se-2 solid solution.