화학공학소재연구정보센터
International Journal of Control, Vol.92, No.2, 270-290, 2019
Event-triggered state estimation for Markovian jumping impulsive neural networks with interval time-varying delays
This paper investigates the event-triggered state estimation problem of Markovian jumping impulsive neural networks with interval time-varying delays. The purpose is to design a state estimator to estimate system states through available output measurements. In the neural networks, there are a set of modes, which are determined by Markov chain. A Markovian jumping time-delay impulsive neural networks model is employed to describe the event-triggered scheme and the network- related behaviour, such as transmission delay, data package dropout and disorder. The proposed event-triggered scheme is used to determine whether the sampled state information should be transmitted. The discrete delays are assumed to be time-varying and belong to a given interval, which means that the lower and upper bounds of interval time-varying delays are available. First, we design a state observer to estimate the neuron states. Second, based on a novel Lyapunov-Krasovskii functional (LKF) with triple-integral terms and using an improved inequality, several sufficient conditions are derived. The derived conditions are formulated in terms of a set of linear matrix inequalities , under which the estimation error system is globally asymptotically stable in the mean square sense. Finally, numerical examples are given to show the effectiveness and superiority of the results.