International Journal of Hydrogen Energy, Vol.44, No.35, 19370-19383, 2019
A coupled power-voltage equilibrium strategy based on droop control for fuel cell/battery/supercapacitor hybrid tramway
In order to improve the robustness of the energy management system (EMS) and avoid the influence of demand power on the design of EMS, a coupled power-voltage equilibrium strategy based on droop control (CPVE-DC) is proposed in this paper. Making use of the principal that the DC bus can directly reflect the changes of load power, the proposed strategy couples DC bus voltage with output powers through droop control to achieve self equilibrium. The proposed EMS is applied into a hybrid tramway model configured with multiple proton exchange membrane fuel cell (PEMFC) systems, batteries and super capacitors (SCs). FC systems and SC systems are responsible for satisfying most of the demand power, therefore the CPVE-DC strategy generates FCs and SCs reference power through power-voltage droop control on the primary control. Then batteries supplement the rest part of load power and generate DC bus voltage reference value of the next sampling time. With the gambling between output power and DC bus voltage, the hybrid system achieves self-equilibrium and steps into steady operation by selecting appropriate droop coefficients. Then the secondary control of the proposed strategy allocates power between every single unit. In addition, a penalty coefficient is introduced to balance SOC of SCs. The proposed strategy is tested under a real drive cycle LF-LRV on RT-LAB platform. The results demonstrate that the proposed strategy can achieve self-equilibrium and is effective to allocate demand power among these power sources, achieve active control for the range of DC bus voltage and SOC consensus of SCs as well. In addition, some faults are simulated to verify the robustness of the proposed strategy and it turns out that the CPVE-DC strategy possesses higher robustness. Finally, the CPVE-DC strategy is compared with equivalent consumption minimization strategy (ECMS) and the results shows that the proposed strategy is able to get higher average efficiency and lower equivalent fuel consumption. (C) 2018 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.