International Journal of Hydrogen Energy, Vol.44, No.26, 13807-13819, 2019
Comparative analysis of two-phase flow in sinusoidal channel of different geometric configurations with application to PEMFC
The droplet dynamics inside a sinusoidal channel for PEMFC (polymer electrolyte membrane fuel cell) are investigated numerically using the VOF (volume of fluid) method. This study is done for three geometrically different channels corresponding to various non dimensional sinusoidal distances (50, 25, 12.5, 16.7 and 8.3). The effects of key parameters like sinusoidal distance (pitch-amplitude ratio), radius of curvature and wall contact angle on the droplet removal in the flow channel are investigated. The performance of the sinusoidal as compared to the conventional channel is studied based on droplet removal rate and GDL (gas diffusion layer) surface water coverage. It is found that the droplet removal rate increases with increasing sinusoidal distance and wall contact angle. In addition, decrease in the sinusoidal distance results in a significant reduction in the average droplet speed and gas diffusion layer surface water coverage. It was also observed that broken bits of the droplet stuck on the wall corners accrued with a reduction in the wall contact angle. The curvy nature of the side walls generally induces a secondary flow effect which would be most beneficial in enhanced reactant diffusion and cell performance. It is suggested that the sinusoidal distance and wall contact angle effect on two-phase flow in a channel is highly significant. As such, needs to be considered for water management in sinusoidal channels. (C) 2019 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
Keywords:PEMFC (polymer electrolyte membrane fuel cell);Sinusoidal channel;Two-phase flow;CFD (computational fluid dynamics);VOF method