Journal of Hazardous Materials, Vol.377, 88-97, 2019
Thermal and pH dual-responsive cellulose microfilament spheres for dye removal in single and binary systems
Cellulose microfilaments/poly(N-Isopropylacrylamide-co-acrylic acid) spheres (MPNAA) were prepared via the in-situ synthesis of semi-interpenetrating networks (semi-IPN). The free radical copolymerization of acrylic acid (AA) (for pH-sensitive chain segments) and N-isopropylacrylamide (NIPAM) (for temperature sensitive chain segments) was conducted in a microwave-reactor in the presence of porous cellulose/microfilament composite spherical beads pre-prepared. The surface morphology and adsorption properties of the as-prepared spheres were systematically characterized. The adsorption behaviors of resulting MPNAA towards dyes, methylene blue (MB) and methyl violet (MV), were pH sensitive; and the optimal adsorption occurred at pH 9. The dynamic adsorption processes could be well fitted with pseudo-second-order kinetic, Elovich and simplified intraparticle diffusion models. Meanwhile, Langmuir, Temkin, Freundlich, and Dubinin-Raduskevich models were used to fit the adsorption isotherms at 25, 40, and 55 degrees C, respectively. The results indicated that the adsorption capacities of MPNAA towards MB and MV could reach as high as 497.5 and 840.3 mg g(-1), respectively, in single systems; and high adsorption capacity was maintain in binary