Journal of Structural Biology, Vol.207, No.1, 21-28, 2019
Molecular structure of sauropsid beta-keratins from tuatara (Sphenodon punctatus)
The birds and reptiles, collectively known as the sauropsids, can be subdivided phylogenetically into the archosaurs (birds, crocodiles), the testudines (turtles), the squamates (lizards, snakes) and the rhynchocephalia (tuatara). The structural framework of the epidermal appendages from the sauropsids, which include feathers, claws and scales, has previously been characterised by electron microscopy, infrared spectroscopy and X-ray diffraction analyses, as well as by studies of the amino acid sequences of the constituent beta-keratin proteins (also referred to as the corneous beta-proteins). An important omission in this work, however, was the lack of sequence and structural data relating to the epidermal appendages of the rhynchocephalia (tuatara), one of the two branches of the lepidosaurs. Considerable effort has gone into sequencing the tuatara genome and while this is not yet complete, there are now sufficient sequence data for conclusions to be drawn on the similarity of the beta-keratins from the tuatara to those of other members of the sauropsids. These results, together with a comparison of the X-ray diffraction pattern of tuatara claw with those from seagull feather and goanna claw, confirm that there is a common structural plan in the beta-keratins of all of the sauropsids, and not just those that comprise the archosaurs (birds and crocodiles), the testudines (turtles) and the squamates (lizards and snakes).
Keywords:Tuatara;beta-Keratin;Sequence comparisons;Archosaurs;Squamates;X-ray fibre diffraction;Rhynchocephalia