화학공학소재연구정보센터
Macromolecules, Vol.52, No.11, 4030-4041, 2019
Poly(olefin)-Based Anion Exchange Membranes Prepared Using Ziegler-Natta Polymerization
Bromoalkyl-functionalized poly(olefin)s were synthesized by copolymerization of 4-(4-methylphenyl)-1-butene with 11-bromo-1-undecene using Ziegler-Natta polymerization. The resulting bromoalkyl-functionalized poly(olefin)s were converted to quaternary ammonium-containing anion-conductive copolymers by reacting the pendant bromoalkyl group with trimethylamine or a custom-synthesized tertiary amine containing pendant quaternary ammonium moieties. Poly(olefin)-based AEMs with three cations per side chain showed considerably higher hydroxide conductivities, up to 201 mS/cm at 80 degrees C in liquid water, compared to that of samples with only one cation per bromoalkyl site (68 mS/cm, 80 degrees C, liquid water), likely due to phase separation in the triple-cation structure. More importantly, triple-cation side-chain poly(olefin) AEMs exhibited higher hydroxide conductivity under relative humidity conditions (50%-100%) than typical AEMs based on benzyltrimethylammonium cations. The triple-cation the triple-cation side-chain poly(olefin)-based AEM exhibited an ionic conductivity as high as 115 mS/cm under 95% RH at 80 degrees C and 11 mS/cm under 50% RH at 80 degrees C. In addition to high ionic conductivity, the triple-cation side-chain poly(olefin) AEMs exhibited good chemical and dimensional stability. High retention of ionic conductivity (>85%) was observed for the samples in 1 M NaOH at 80 degrees C over 1000 h. Based on these high-performance poly(olefin) AEMs, a fuel cell with a peak power density of 0.94 W cm(-2) (1.28 W cm(-2) after iR correction) was achieved under H-2/O-2 at 70 degrees C. The results of this study suggest a new, low-cost, and scalable route for preparation of poly(olefin)-based AEMs for anion exchange membrane applications.