화학공학소재연구정보센터
Oil Shale, Vol.36, No.2, 142-150, 2019
ACHIEVING RESILIENCE AND SUSTAINABILITY THROUGH INNOVATIVE DESIGN FOR OIL SHALE PYROLYSIS PROCESS MODEL
Low international oil price, advance in renewable energy technology, development of energy storage technology and strict environmental regulations have presented encumbrance and opportunity for the current oil shale project development. Oil shale industry is at critical stage and facing challenges from competitive conventional energy, clean renewable energy and more strict environmental regulations. Through an innovative design of the oil shale pyrolysis process model by utilizing a developed new advanced technology, the oil shale project could improve its resilience and sustainability with excellent social and economic performance. This paper investigated the shale oil production process in terms of technology selection, utilization of resource, energy efficiency, oil yield, and mining to improve the resilience of oil shale project economic performance facing lower oil price. Innovative design options for the oil shale production process model were discussed from the following aspects: 1) itemized cost analysis and comparison of shale oil production technologies; 2) development of a new oil shale pyrolysis process model with combination of the existing vertical retort process (VRP) and horizontal rotary-kiln retort process (HRRP) technologies to improve the oil shale process economic gain; 3) discussion of innovative design options to improve the economic performance of the process by utilizing the current new advanced energy storage technology. Investigation of the applicability of the energy storage system (ESS) to the oil shale project was carried out with a sensitivity analysis of its cost-revenue.