Reactive & Functional Polymers, Vol.141, 145-154, 2019
Dialdehyde carboxymethyl cellulose cross-linked chitosan for the recovery of palladium and platinum from aqueous solution
Platinum (Pt) and palladium (Pd) have widespread applications, such as in catalysts, jewelry, fuel cells, and electronics because of their favorable physical and chemical properties. Recovery of Pt and Pd from secondary sources is of great concern due to the increased market demand and limitation of the natural reserves of these precious metals. The aim of this research is to achieve recovery of Pt and Pd ions from dilute aqueous solution using dialdehyde of carboxymethyl cellulose (DCMC) crosslinked chitosan (Ch-DCMC). The DCMC was prepared by periodate oxidation of carboxymethyl cellulose (CMC). Both the DCMC and Ch-DCMC were characterized before and after Pt or Pd adsorption using Fourier-transformed infrared (FTIR) spectroscopy, X-ray powder diffraction (XRPD), and scanning electron microscopy (SEM). The effect of cross-linking ratios of chitosan and DCMC (1:1, 1:0.8, 1:0.5, 1:0.25 and 1:0.1) on the Pt and Pd recovery was studied. The optimal cross-linking ratio was found to be 1:0.25 (chitosan: DCMC) with maximum adsorption capacity of 80.8 mg/g Pt and 89.4 mg/g Pd. High selectivity for Pt and Pd compared to base metals and common anions was achieved.