화학공학소재연구정보센터
Macromolecular Research, Vol.27, No.8, 803-810, August, 2019
Design of Coordination-Crosslinked Nitrile Rubber with Self-Healing and Reprocessing Ability
E-mail:,
In this work, we describe a simple approach to design of a coordination crosslinked elastomer with extraordinary mechanical properties: self-healing and recycling abilities by introducing Co-cyano coordination into nitrile rubber(NBR) matrix. The formation of reversible coordination crosslink network results in good mechanical properties superior to conventional sulfur-cured NBR, such as high stretchability and toughness. The reversibility of metal-ligand bond endows the polymer with self-healing capability and recycling or reprocessing abilities by rearrangement at elevated temperature. The fully cut samples after self-healing or reprocessing can restore their original tensile strength. It is also worth noting that the reclaimed NBR exhibited higher modulus than its original sample due to the compensation of new metal-ligand bonds formed during heating. This study provides possibilities to extend lifetime, reshaping and recycling capabilities of commercial rubber and reduce toxicity and environmental issues caused by waste rubber.
  1. Vieyres A, Perez-Aparicio R, Albouy PA, Sanseau O, Saalwachter K, Long DR, Sotta P, Macromolecules, 46(3), 889 (2013)
  2. Hagen R, Salmen L, Stenberg B, J. Polym. Sci. B: Polym. Phys., 34(12), 1997 (1996)
  3. Zhao F, Shi X, Zhang P, J. Macromol. Sci. Part B, 48, 663 (2009)
  4. Keller RC, Rubber Chem. Technol., 61, 238 (1988)
  5. Yu BC, Jung JW, Park K, Goodenough JB, Energy Environ. Sci., 10, 86 (2017)
  6. Molanorouzi M, Mohaved SO, Polym. Degrad. Stabil., 128, 115 (2016)
  7. Movahed SO, Ansarifar A, Zohuri G, Ghaneie N, Kermany Y, J. Elastom. Plast., 48, 122 (2014)
  8. Xiang HP, Rong MZ, Zhang MQ, ACS Sustain. Chem. Eng., 4, 2715 (2016)
  9. Xiang HP, Qian HJ, Lu ZY, Rong MZ, Zhang MQ, Green Chem., 17, 4315 (2015)
  10. Xu C, Huang X, Li C, Chen Y, Lin B, Liang X, ACS Sustain. Chem. Eng., 4, 6981 (2016)
  11. Liu YL, Hsieh CY, J. Polym. Sci. A: Polym. Chem., 44, 905 (2005)
  12. Polgar LM, Criscitiello F, Essen MV, Araya-Hermosilla R, Migliore N, Lenti M, Raffa P, Picchioni F, Pucci A, Nanomaterials, 8, 58 (2018)
  13. Yanagisawa Y, Nan YL, Okuro K, Aida T, Science, 359(6371), 72 (2018)
  14. Yarmohammadi M, Shahidzadeh M, Ramezanzadeh B, Prog. Org. Coat., 121, 45 (2018)
  15. Lu YX, Guan ZB, J. Am. Chem. Soc., 134(34), 14226 (2012)
  16. Liu Y, Tang Z, Chen Y, Zhang C, Guo B, ACS Appl. Mater. Interfaces, 10, 2992 (2018)
  17. Bai J, Shi Z, ACS Appl. Mater. Interfaces, 9, 27213 (2017)
  18. Das A, Sallat A, Bohme F, Suckow M, Basu D, Wießner S, Stockelhuber KW, Voit B, Heinrich G, ACS Appl. Mater. Interfaces, 7, 20623 (2015)
  19. Miwa Y, Kurachi J, Kohbara Y, Kutsumizu S, Communications Chemistry, Article #5, DOI: 1038/s42004-017-0004-9 (2018).
  20. Xu C, Cao L, Lin B, Liang X, Chen Y, ACS Appl. Mater. Interfaces, 8, 17728 (2016)
  21. Li CH, Wang C, Keplinger C, Zuo JL, Jin L, Sun Y, Zheng P, Cao Y, Lissel F, Linder C, You XZ, Bao Z, Nat. Chem., 8, 618 (2016)
  22. Wang D, Guo J, Zhang H, Cheng B, Shen H, Zhao N, Xu J, Mater. Chem. A, 3, 12864 (2015)
  23. Han Y, Wu X, Zhang X, Lu C, ACS Appl. Mater. Interfaces, 9, 20106 (2017)
  24. Xiang HP, Rong MZ, Zhang MQ, Polymer, 108, 339 (2017)
  25. Ling L, Li J, Zhang G, Sun R, Wong CP, Macromol. Res., 26(4), 365 (2018)
  26. Kuang X, Liu G, Dong X, Wang D, Macromol. Mater. Eng., 301, 535 (2016)
  27. Ryu YS, Oh KW, Kim SH, Macromol. Res., 24(10), 874 (2016)
  28. Liu J, Liu J, Wang S, Huang J, Wu S, Tang ZH, Guo BC, Zhang LQ, J. Mater. Chem. A, 5, 25660 (2017)
  29. Mei JF, Jia XY, Lai JC, Sun Y, Li CH, Wu JH, Cao Y, You XZ, Bao ZN, Macromol. Rapid Commun., 37(20), 1667 (2016)
  30. Chen M, Wang W, Chen H, Bai L, Xue Z, Wei D, Yang H, Niu Y, Macromol. Res., 22, 5424 (2018)
  31. Jia XY, Mei JF, Lai JC, Li CH, You XZ, Chem. Commun., 51, 8928 (2015)
  32. Zhu S, Zhang W, Zhang J, J. Mater. Sci., Mater. Electron., 29, 6519 (2018)
  33. Boorman PM, Craig PJ, Swaddle TW, Canadian J. Chem., 48, 838 (1970)
  34. Sacco A, Cotton FA, J. Am. Chem. Soc., 84, 2043 (1962)
  35. Mou H, Shen F, Shi Q, Liu Y, Wu C, Guo W, Eur. Polym. J., 48, 857 (2012)
  36. Shang P, Shao C, Li Q, Wu C, Mater. Res. Express, 5 (2018)
  37. Gold BJ, Hovelmann CH, Weiss C, Radulescu A, Allgaier J, Pyckhout-Hintzen W, Wischnewski A, Richter D, Polymer, 87, 123 (2016)
  38. Schmitt CNZ, Politi Y, Reinecke A, Harrington MJ, Biomacromolecules, 16(9), 2852 (2015)
  39. Xia NN, Xiong XM, Wang J, Rong MZ, Zhang MQ, Chem. Sci., 7, 2736 (2016)
  40. Tang ZH, Huang J, Guo BC, Zhang LQ, Liu F, Macromolecules, 49(5), 1781 (2016)
  41. Liu X, Lu C, Wu X, Zhang X, J. Mater. Chem. A, 5, 9824 (2017)
  42. Liu J, Wang S, Tang ZH, Huang J, Guo BC, Huang GS, Macromolecules, 49(22), 8593 (2016)
  43. Das A, Sallat A, Bohme F, Sarlin E, Vuorinen J, Vennemann N, Heinrich G, Stockelhuber KW, Polymers, 10, 94 (2018)
  44. Huang Y, Huang MZY, Zhu MS, Pei ZX, Wang ZF, Xue Q, Xie XM, Zhi CY, Nat Commun., 6, 10310 (2015)
  45. Huang J, Tang ZH, Yang ZJ, Guo BC, Macromol. Rapid Commun., 37(13), 1040 (2016)
  46. Patrick JF, Robb MJ, Sottos NR, Moore JS, White SR, Nature, 540(7633), 363 (2016)
  47. Campos-Lopez E, McIntyre D, Fetters LJ, Macromolecules, 6, 415 (1973)
  48. Jiang F, Wang ZK, Qao Y, Wang ZG, Tang CB, Macromolecules, 46(12), 4772 (2013)
  49. Huang YC, Zheng Y, Sarkar A, Xu YM, Stefik M, Benicewicz BC, Macromolecules, 50(12), 4742 (2017)