화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.78, 84-89, October, 2019
Fabrication and thermal behavior of Al/Fe2O3 energetic composites for effective interfacial bonding between dissimilar metallic substrates
E-mail:
Herein, the roles of an Al/Fe2O3 energetic composites as a heat energy source and a bonding medium for interfacially bonding dissimilar Al/Cu metallic substrates are systematically investigated. Energetic material (EM)/solder material (SM) bilayer pellets are assembled and ignited between the interfacial Al/ Cu substrates for bonding. The upper EM layer comprising an Al microparticle (MP)/Al nanoparticle (NP)/ Fe2O3 NP composite serves as a heat source for melting the lower SM layer comprising SAC305 MP for strongly bonding the Cu substrate with the melted SM layer. The intermetallic compounds (AlxFey) formed during the aluminothermic reactions of the ignited EM layer play an important role as a bonding medium between the Al substrate and the melted EM layer. The dissimilar Al/Cu substrates are interfacially bonded using an EM layer with a fuel-to-oxidizer ratio of 1.97-4.44. The maximum mechanical strength of the bonded Al/Cu substrates increases with the increase in the fuel-to-oxidizer ratio owing to the supply of sufficient heat energy under fuel-rich conditions. The EM layer acts as an effective heat energy source and mechanical bonding medium. The proposed interfacial bonding technique is simple, easy, and versatile for welding and joining dissimilar metallic substrates for industrial applications.
  1. Lancaster JF, Phys. Technol., 15, 73 (1984)
  2. Dong H, Hu W, Duan Y, Wang X, Dong C, J. Mater. Process. Technol., 212, 458 (2012)
  3. Bozzi S, Helbert-Etter A, Baudin T, Criqui B, Kerbiguet J, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 527, 4505 (2010)
  4. Liu P, Li Y, Geng H, Wang J, Mater. Lett., 61, 1288 (2007)
  5. Shang J, Wang K, Zhou Q, Zhang D, Huang J, Li G, Mater. Des., 34, 559 (2012)
  6. Hayat F, Mater. Des., 32, 2476 (2011)
  7. Xia C, Li Y, Puchkov U, Gerasimov S, Wang J, Vacuum, 82, 799 (2008)
  8. Xue P, Xiao B, Ni D, Ma Z, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 527, 5723 (2010)
  9. Xue P, Ni D, Wang D, Xiao B, Ma Z, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 527, 4683 (2011)
  10. Feng J, Songbai X, Wei D, Mater. Des., 42, 156 (2012)
  11. Honarpisheh M, Asemabadi M, Sedighi M, Mater. Des., 37, 122 (2012)
  12. Xiao Y, Ji H, Li M, Kim J, Mater. Des., 52, 740 (2013)
  13. Tan C, Jiang Z, Li L, Chen Y, Chen X, Mater. Des., 51, 466 (2013)
  14. Zhao Y, Li D, Zhang Y, Sci. Technol. Weld. Joining, 18, 354 (2013)
  15. Carlone P, Astarita A, Palazzo GS, Paradiso V, Squillace A, Int. J. Adv. Manuf. Technol., 79, 1109 (2015)
  16. DebRoy T, Bhadeshia H, Sci. Technol. Weld. Joi., 15, 266 (2010)
  17. Swiston AJ, Hufnagel TC, Weihs TP, Scr. Mater., 48, 1575 (2003)
  18. Qiu X, Wang J, Sens. Actuators A-Phys., 141, 476 (2008)
  19. Kinsey AH, Slusarski K, Woll K, Gibbins D, Weihs TP, J. Mater. Sci., 51(12), 5738 (2016)
  20. Kim SH, Zachariah MR, Adv. Mater., 16(20), 1821 (2004)
  21. Kim SB, Kim KJ, Cho MH, Kim JH, Kim KT, Kim SH, ACS Appl. Mater. Interfaces, 8, 9405 (2016)
  22. Kim JH, Cho MH, Kim KJ, Kim SH, Carbon, 118, 268 (2017)
  23. Kim KJ, Cho MH, Kim SH, Combust. Flame, 197, 319 (2018)
  24. Parimi VS, Huang S, Zheng X, Proc. Combust. Inst., 36, 2317 (2017)
  25. Seo HS, Kim JK, Kim JW, Kim HS, Koo KK, J. Ind. Eng. Chem., 20(1), 189 (2014)
  26. Wen JZ, Ringuette S, Bohlouli-Zanjani G, Hu A, Nguyen NH, Persic J, Petre CF, Zhou YN, Nanoscale Res. Lett., 8, 184 (2013)
  27. Ahn JY, Kim JH, Kim JM, Lee DW, Park JK, Lee D, Kim SH, Powder Technol., 241, 67 (2013)
  28. Shin MS, Kim JK, Kim JW, Moraes CAM, Kim HS, Koo KK, J. Ind. Eng. Chem., 18(5), 1768 (2012)
  29. Petrantoni M, Rossi C, Salvagnac L, Conedera V, Esteve A, Tenailleau C, Alphonse P, Chabal YJ, J. Appl. Phys., 108, 084323 (2010)
  30. Zhang K, Rossi C, Alphonse P, Tenailleau C, Cayez S, Chane-Ching JY, Appl. Phys. A-Mater. Sci. Process., 94, 957 (2009)
  31. Pourmortazavi SM, Hajimirsadeghi SS, Kohsari I, Fathollahi M, Hosseini SG, Fuel, 87(2), 244 (2008)
  32. Sanders VE, Asay BW, Foley TJ, Tappan BC, Pacheco AN, Son SF, J. Propul. Power, 23, 707 (2007)
  33. Dolgoborodov AY, Streletskii A, Makhov M, Kolbanev I, Fortov V, Russ. J. Phys. Chem. B, 1, 606 (2007)
  34. Pantoya ML, Granier JJ, Propellants Explos. Pyrotech., 30, 53 (2005)
  35. Dolgoborodov AY, Streletskii A, Makhov M, TeselkinV, Guseinov SL, Storozhenko P, Fortov V, Russ. J. Phys. Chem. B, 6, 523 (2012)
  36. Plummer A, Kuznetsov V, Joyner T, Shapter J, Voelcker NH, Small, 7, 3392 (2011)
  37. Jacob RJ, Ortiz-Montalvo DL, Overdeep KR, Weihs TP, Zachariah MR, J. Appl. Phys., 121, 054307 (2017)
  38. Granier JJ, Pantoya ML, Combust. Flame, 138(4), 373 (2004)