화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.78, 106-115, October, 2019
Computational simulation and theoretical modeling of CO2 separation using EDA, PZEA and PS absorbents inside the hollow fiber membrane contactor
E-mail:
This paper deals with developing a theoretical modeling and a two dimensional (2D) computational simulation to evaluate the CO2 separation percentage from CO2/CH4 gaseous mixture under non-wetting mode of operation inside the membrane pores and counter-current adjustment of liquid and gas flows. As the novelty, the effect of ethylenediamine (EDA), 2-(1-piperazinyl)-ethylamine (PZEA) and potassium sarcosinate (PS) liquid absorbents on the CO2 separation performance is studied and the most efficient absorbent is introduced. The results show that PZEA can sequester 88.75% of inlet CO2 while the separation percentage of CO2 using PS and EDA is 82.2 and 81%, respectively. In addition, the mathematical model outcomes corroborate that increase in some operational factors and hollow fiber module specifications such as liquid flow rate, fiber packing density, module length and number of fibers encourages the separation efficiency of CO2 due to enhancing the residence time, contact area and consequently mass transfer rates inside the HFMC while increment of tortuosity factor and gas flow rate negatively deteriorates the separation percentage of CO2 which is able to be justified due to enhancement of mass transfer resistance through the pores of microporous membrane.
  1. Herzog HJ, Peer Reviewed: What Future for Carbon Capture and Sequestra-tion? ACS Publications, 2001.
  2. Herzog H, Eliasson B, Kaarstad O, Sci. Am., 282, 72 (2000)
  3. Gabelman A, Hwang ST, J. Membr. Sci., 159(1-2), 61 (1999)
  4. Aroonwilas A, Veawab A, Ind. Eng. Chem. Res., 43(9), 2228 (2004)
  5. Zanganeh KE, Shafeen A, Salvador C, Energy Procedia, 1, 247 (2009)
  6. Wallin M, Olausson S, Chem. Eng. Commun., 123, 43 (1993)
  7. Li JL, Chen BH, Sep. Purif. Technol., 41(2), 109 (2005)
  8. Karoor S, Sirkar KK, Ind. Eng. Chem. Res., 32, 674 (1993)
  9. Yan YF, Zhang ZE, Zhang L, Chen YR, Tang Q, Energy Fuels, 28(9), 5745 (2014)
  10. Shirazian S, Marjani A, Rezakazemi M, Eng. Comput., 28, 189 (2012)
  11. Nakhjiri AT, Heydarinasab A, Bakhtiari O, Mohammadi T, Chin. J. Chem. Eng., 26, 1861 (2018)
  12. Nakhjiri AT, Heydarinasab A, Bakhtiari O, Mohammadi T, Sustain. Environ. Res., 28, 186 (2018)
  13. Nakhjiri AT, Heydarinasab A, Bakhtiari O, Mohammadi T, J. Environ. Chem. Eng., 6, 150 (2018)
  14. Hamour N, Bidarian A, Sandall OC, Sep. Sci. Technol., 22, 921 (1987)
  15. Al-Marzouqi MH, Marzouk SAM, El-Naas MH, Abdullatif N, Ind. Eng. Chem. Res., 48(7), 3600 (2009)
  16. Sohrabi MR, Marjani A, Moradi S, Davallo M, Shirazian S, Appl. Math. Model., 35, 174 (2011)
  17. Nakhjiri AT, Heydarinasab A, Bakhtiari O, Mohammadi T, J. Membr. Sci., 565, 1 (2018)
  18. Zhang HY, Wang R, Liang DT, Tay JH, J. Membr. Sci., 279(1-2), 301 (2006)
  19. Tantikhajorngosol P, Laosiripojana N, Jiraratananon R, Assabumrungrat S, Int. J. Heat Mass Transf., 128, 1136 (2019)
  20. Abu Hatab F, Abdullatif N, Marzouk SAM, Al-Marzouqi MH, Sep. Purif. Technol., 217, 240 (2019)
  21. Mesbah M, Momeni M, Soroush E, Shahsavari S, Galledari SA, J. Environ. Chem. Eng., 7, 102781 (2019)
  22. Al-Marzouqi MH, El-Naas MH, Marzouk SAM, Al-Zarooni MA, Abdullatif N, Faiz R, Sep. Purif. Technol., 59(3), 286 (2008)
  23. Rezakazemi M, Niazi Z, Mirfendereski M, Shirazian S, Mohammadi T, Pak A, Chem. Eng. J., 168(3), 1217 (2011)
  24. Cao F, Gao H, Gao G, Liang Z, Chem. Eng. Process. Process Intensif., 136, 226 (2018)
  25. Zhang ZE, Chen F, Rezakazemi M, Zhang WX, Lu CF, Chang HX, Quan XJ, Chem. Eng. Res. Des., 131, 375 (2018)
  26. Nakhjiri AT, Heydarinasab A, Period. Polytech. Chem. Eng., 1 (2017).
  27. Ghadiri M, Marjani A, Shirazian S, Int. J. Greenhouse Gas Control, 13, 1 (2013)
  28. Happel J, AIChE J., 5, 174 (1959)
  29. Eslami S, Mousavi SM, Danesh S, Banazadeh H, Adv. Eng. Softw., 42, 612 (2011)
  30. Faiz R, Al-Marzouqi M, Sep. Purif. Technol., 76(3), 351 (2011)
  31. Faiz R, Al-Marzouqi M, J. Membr. Sci., 342(1-2), 269 (2009)
  32. Razavi SMR, Shirazian S, Nazemian M, Arabian J. Chem., 9, 62 (2016)
  33. Bird RB, Stewart WE, Lightfoot EN, Transport Phenomena, 16 (1960)
  34. Cussler EL, Diffusion: Mass Transferi Fluid Systems, Cambridge University Press, 2009.
  35. Salvi AP, Vaidya PD, Kenig EY, Can. J. Chem. Eng., 92(12), 2021 (2014)
  36. Paul S, Ghoshal AK, Mandal B, Chem. Eng. Sci., 64(7), 1618 (2009)
  37. Aronu UE, Hartono A, Hoff KA, Svendsen HF, Ind. Eng. Chem. Res., 50(18), 10465 (2011)
  38. Paul S, Ghoshal AK, Mandal B, Chem. Eng. Sci., 64(2), 313 (2009)
  39. Zhang Z, Yan Y, Wang J, Zhang L, Chen Y, Ju S, Nuclear Forum, American Society of Mechanical Engineers, pp.V001Y011A001 2015.
  40. Hamborg ES, van Swaaij WPM, Versteeg GF, J. Chem. Eng. Data, 53(5), 1141 (2008)
  41. Hikita H, Asai S, Ishikawa H, Honda M, Chem. Eng. J., 13, 7 (1977)
  42. Zhou S, Chen X, Nguyen T, Voice AK, Rochelle GT, ChemSusChem, 3, 913 (2010)