Journal of Industrial and Engineering Chemistry, Vol.78, 137-142, October, 2019
Opto-thermal technique for measuring thermal conductivity of polyacrylonitrile based carbon fibers
E-mail:
Thermal conductivity of carbon fibers (CFs) is an important property because CFs are used as heat dissipation fillers in composites for aerospace and electronics applications. However, evaluating thermal conductivity of a single filament of CFs is an arduous task due to dimensional issue of specimens and limitations of conventional measurement system. Therefore, we suggest an opto-thermal technique using Raman spectroscopy to measure thermal conductivity of commercial polyacrylonitrile based CFs (T300, T700SC and T800 H). The opto-thermal technique used that G band from Raman spectroscopy of carbon materials is shifted depending on temperature. For verifying an accuracy of the technique, the laser absorbance of CFs were estimated, and the thermal conductivity was measured depending on the length of CF. The measured data were reflected in the thermal conductivity calculation formula. It was demonstrated that the method provides more reasonable thermal conductivity values compare to a conventional Angstrom method. In addition, this simple technique confirmed that graphitic structure of CFs played a critical role in their thermal conductivity.
Keywords:Polyacrylonitrile;Carbon fiber;Thermal conductivity;Raman spectroscopy;Opto-thermal technique
- Frank E, Steudle LM, Ingildeev D, Sporl JM, Buchmeiser MR, Angew. Chem.-Int. Edit., 53, 5262 (2014)
- Wei GC, Robbins JM, Am Ceram. Soc. Bull., 64, 691 (1985)
- Chen YM, Ting JM, Carbon, 40, 359 (2002)
- Noh YJ, Kim SY, Polym. Test, 45, 132 (2015)
- Yu GC, Wu LZ, Feng LJ, Mater. Des., 88, 1063 (2015)
- Alway-Cooper RM, Theodore M, Anderson DP, Ogale AA, J. Compos. Mater., 47, 2399 (2013)
- Gallego NC, Edie DD, Nysten B, Issi JP, Treleaven JW, Deshpande GV, Carbon, 38, 1003 (2000)
- Wang HD, Liu JH, Zhang X, Song Y, Int. J. Heat Fluid Flow, 70, 40 (2014)
- Wang JL, Gu M, Zhang X, Song Y, J. Phys. D-Appl. Phys., 42, 105502 (2009)
- Li QY, Zhang X, Thermochim. Acta, 581, 26 (2014)
- Lavin JG, Boyington DR, Lahijani J, Nystem B, Issi JP, Carbon, 31, 1001 (1993)
- Lee JU, Yoon D, Kim H, Lee SW, Cheong H, Phys. Rev. B, 83, 081419 (2011)
- Malekpour H, Chang KH, Chen JC, Lu CY, Nika DL, Novoselov KS, Balandin AA, Nano Lett., 14, 5155 (2014)
- Zhang X, Sun D, Li Y, Lee GH, Cui X, Chenet D, You Y, Heinz TF, Hone JC, ACS Appl. Mater. Interfaces, 7, 25923 (2015)
- Kelly BT, Carbon, 5, 247 (1967)
- Heremans J, Rahim I, Dresselhaus MS, Phys. Rev. B, 32, 6742 (1985)
- Nysten B, Issi JP, Barton R, Boyington DR, Lavin JG, Phys. Rev. B, 44, 2142 (1991)
- Qiu L, Zheng XH, Zhu J, Su GP, Tang DW, Carbon, 51, 265 (2013)
- Qin X, Lu Y, Xiao H, Wen Y, Yu TA, Carbon, 50, 4459 (2012)
- Matthews MJ, Pimenta MA, Dresselhaus G, Dresselhaus MS, Endo M, Phys. Rev. B, 59, R6585 (1999)
- Kim C, Park SH, Cho JJI, Lee DY, Park TJ, Lee WJ, Yang KS, J. Raman Spectrosc., 35, 928 (2004)
- Balandin AA, Nano Lett., 8, 902 (2008)
- Sendova M, Flahaut E, Hartsfield T, J. Appl. Phys., 108, 044309 (2010)
- Li HD, Yue KT, Lian ZL, Zhan Y, Zhou LX, Zhang SL, Shi ZJ, Gu ZN, Liu BB, Yang RB, Yang HB, Zou GT, Zhang Y, Iijima S, Appl. Phys. Lett., 76, 2053 (2000)
- Calizo I, Balandin AA, Bao W, Miao F, Lau CN, Nano Lett., 7, 2645 (2007)
- Tan PH, Deng Y, Zhao Q, Cheng W, Appl. Phys. Lett., 74, 1818 (1999)
- Son SY, Jo HN, Park M, Jung GY, Lee DS, Lee S, Joh HI, ACS Appl. Mater. Interfaces, 11, 13616 (2019)
- Ferrari AC, Basko DM, Nat. Nanotechnol., 8(4), 235 (2013)
- Naito K, Yang JM, Xu Y, Kagawa Y, Carbon, 48, 1849 (2010)