화학공학소재연구정보센터
Polymer(Korea), Vol.43, No.5, 694-699, September, 2019
입체장애가 큰 아민 광 안정제를 기반으로 하는 항산화 기능성 수화젤 콘택트렌즈 제조
Preparation of Antioxidant Hydrogel Contact Lenses Based on Hindered Amine Light Stabilizer
E-mail:
초록
본 연구에서는 입체장애가 큰 아민 광 안정제(hindered amine light stabilizer, HALS)인 1,2,2,6,6-펜타메틸-4-피퍼리딜 메타크릴레이트 단량체를 이용하여 항산화 수화젤 콘택트렌즈를 제조하였다. 렌즈 합성은 2-하이드록시에틸 메타크릴레이트, 에틸렌 글리콜 디메타크릴레이트와의 공중합을 통해 이루어졌으며, HALS 단량체 무게 비율을 3, 5, 7%로 조절하여 3종의 렌즈들을 준비하였다. 제조된 렌즈는 HALS 그룹이 도입되었음에도 불구하고, 기존 수화젤 콘택트렌즈와 유사한 가시광선 투과율 및 함수율을 나타내었다. 2,2-다이페닐-1-피크릴하이드라질 라디칼 소거 분석법을 이용하여 항산화 기능성을 확인한 결과, HALS 그룹을 포함하지 않는 대조군 렌즈의 라디칼 소거율(52.2%)에 비해 항산화 렌즈 시료들은 25%이상 높은 소거율을 보였다. 본 결과는 대표적 항산화 물질인 아스코빅산의 항산화 기능대비 80% 이상에 해당하는 수치이다.
In this work, we prepared antioxidant hydrogel contact lenses based on a hindered amine light stabilizer (HALS) which is 1,2,2,6,6-pentamethylpiperidin-4-yl methacrylate. The synthesis of the antioxidant hydrogel contact lenses was performed via the copolymerization of HALS monomer, 2-hydroxyethyl methacrylate and ethylene glycol dimethacrylate. Three contact lenses were prepared by varying the weight ratio (3, 5, 7%) of HALS monomer. Although the HALS group was incorporated in the hydrogel contact lenses, the prepared lenses exhibited visible light transmittance and water content similar to conventional hydrogel contact lenses without HALS group. The antioxidant activities of the HALS-based lenses were evaluated using 2,2-diphenyl-1-picrylhydrazyl radical scavenging assay. Consequently, the antioxidant lenses showed more than 25% higher radical scavenging activities than that (52.2%) of a control lens without HALS group. These values are more than 80% of the antioxidant activity of ascorbic acid, which is well-known as an antioxidant.
  1. Khodr B, Khalil Z, Free Radical Biol. Med., 30, 1 (2001)
  2. Gordillo GM, Sen CK, Am. J. Surg., 186, 259 (2003)
  3. Apel K, Hirt H, Annu. Rev. Plant Biol., 55, 373 (2004)
  4. Senel O, Cetinkale O, Ozbay G, Ahcioglu F, Bulan R, Ann. Plast. Surg., 35, 443 (1997)
  5. Seidel JM, Malmonge SM, Mater. Res., 3, 79 (2000)
  6. Curcio M, Cirillo G, Parisi OI, Iemma F, Spizzirri UG, Altimari I, Picci N, Puoci F, J. Funct. Biomater., 2, 1 (2011)
  7. Krishna MC, DeGraff W, Hankovszky OH, Sar CP, Kalai T, Jeko J, Russo A, Mitchell JB, Hideg K, J. Med. Chem., 41, 3477 (1998)
  8. Kejlova K, Labsky J, Jirova D, Bendova H, Toxicol. In Vitro, 19, 957 (2005)
  9. Polakova L, Raus V, Kostka L, Braunova A, Pilar J, Lobaz V, Panek J, Sedlakova Z, Biomacromolecules, 16(9), 2726 (2015)
  10. Papariello GJ, Janish MAM, Anal. Chem., 37, 899 (1965)
  11. Soares AA, de Souza CGM, Daniel FM, Ferrari GP, da Costa SMG, Peralta RM, Food Chem., 112, 775 (2009)
  12. Kim BR, Kang BM, Vales TP, Yang SK, Lee JM, Kim HJ, Macromol. Res., 26(1), 35 (2018)
  13. Kim HJ, Ryu GC, Jeong KS, Jun J, Macromol. Res., 23(1), 74 (2015)
  14. Song KS, Kim TH, Sung AY, J. Korean Chem. Soc., 57, 300 (2013)
  15. Kang B, Vales TP, Cho BK, Kim JK, Kim HJ, Molecules, 22, 1976 (2017)
  16. Gijsman P, Polym. Degrad. Stabil., 145, 2 (2017)
  17. Nicklisch SCT, Waite JH, MethodsX, 1, 233 (2014)