화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.79, 62-70, November, 2019
High-temperature oxidation of europium (II) sulfide
E-mail:
The process of high-temperature oxidation of EuS in the air was explored in the temperature range of 500-1000 °C. The oxidation reaction enthalpy was determined (ΔH0 exp = -1718.5 kJ/mol). The study of oxidation products allowed to establish the mechanism of EuS oxidation with oxygen. At 500-600 °C, EuS is oxidized to a mixture of Eu3+-containing compounds (Eu3S4, Eu2O2S). In the range of 700-1000 °C, only europium oxysulfate Eu2O2SO4 is formed. The structure refinement for Eu2O2SO4 was performed by the Rietveld method. The luminescence intensity of europium oxysulfate Eu2O2SO4 with characteristic 4f-4f transitions from the 5D0 state was investigated as a function of oxidation temperature.
  1. Li S, Wang DTL Cho Y, Liu X, Zhou X, Lu L, Zhang L, Takeda T, Hirosaki N, Xie RJ, Chem. Mater., 30(2), 494 (2017)
  2. Shi XF, Wang ZH, Takei T, Wang XJ, Zhu Q, Li XD, Kim BN, Sun XD, Li JG, Inorg. Chem., 57(11), 6632 (2018)
  3. Li C, Fan X, Jiang P, Jin X, Mater. Lett., 222, 41 (2018)
  4. Baur F, Justel T, J. Lumines., 196, 431 (2018)
  5. Behrendt M, Mahlik S, Grinberg M, Stefanska D, Deren PJ, Opt. Mater., 63, 158 (2017)
  6. Puchalska M, Opt. Mater., 72, 152 (2017)
  7. van de Haar MA, J. Werner, N. Kratz, Hilgerink T, Tachikirt M, Honold J, Kramers MR, App. Phys. Lett., 112(13), 132101 (2018)
  8. Laishram R, Maitra U, Chem. Select., 3(2), 519 (2018)
  9. Shi P, Xia Z, Molokeev MS, Atuchin VV, AAPG Bull., 43(25), 9669 (2014)
  10. Atuchin VV, Aleksandrovsky AS, Chimitova OD, Gavrilova TA, Krylov AS, Molokeev MS, Oreshonkov AS, Bazarov BG, Bazarova JG, J. Phys. Chem. C, 118(28), 15404 (2014)
  11. Ji H, Huang Z, Xia Z, Molokeev MS, Jang X, Lin Z, Atuchin VV, Dalton Trans., 44(16), 7679 (2015)
  12. Denisenko YG, Aleksandrovsky AS, Atuchin VV, Krylov AS, Molokeev MS, Oreshonkov AS, Shestakov NP, Andreev OV, J. Ind. Eng. Chem., 68, 109 (2018)
  13. Reshak AH, Alahmed ZA, Bila J, Atuchin VV, Bazarov BG, Chimitova OD, Molokeev MS, Prosvirin IP, Yelisseyev AP, J. Phys. Chem. C, 120(19), 10559 (2016)
  14. Wang X, Molokeev MS, Zhu Q, Li JG, Chem. Europ. J., 23, 16034 (2017)
  15. Atuchin VV, Subanakov AK, Aleksandrovsky AS, Bazarov BG, Bazarova JG, Gavrilova TA, Krulov AS, Molokeev MS, Oreshonkov AS, Yu S, Mater. Des., 140, 488 (2018)
  16. Choi MH, Kim MK, Jo VN, Lee DW, Shim IIW, Ok KM, Bull. Korean Chem. Soc., 31(4), 1077 (2010)
  17. Paama L, Pitkanen I, Valkonen J, Parnoja E, Kola H, Peramaki P, Talanta, 67(5), 897 (2005)
  18. Yan X, DinG S, Zheng X, J. Sol. State Chem, 180(7), 2020 (2007)
  19. Denisenko YG, Atuchin VV, Molokeev MS, Aleksandrovsky AS, Krylov AS, Oreshonkov AS, Volkova SS, Andreev OV, Inorg. Chem., 57(21), 13279 (2018)
  20. Zhang X, Ma Y, Zhao H, Jiang C, Sun Y, Xu Y, J. Struct. Chem., 52(5), 954 (2011)
  21. Chen F, Chen G, Liu T, Zhang N, Liu X, Luo H, Li J, Chen L, Ma R, Qiu G, Sci. Reports, 5, 17934 (2015)
  22. Shaterian M, Rezvani MA, Shahsavandi V, Qasemi K, J. Nanostruct., 7(2), 97 (2017)
  23. Ma D, Li C, Wang L, Liu H, Zhong S, Li Y, J. Nanoparticle Res., 19(10), 341 (2017)
  24. Paul W, J. Magn. Magn. Mater., 87, 23 (1990)
  25. Lian JB, Sun XD, Li XD, Mater. Chem. Phys., 125(3), 479 (2011)
  26. Valsamakis I, Flytzani-Stephanopoulos M, Appl. Catal. B: Environ., 106(1-2), 255 (2011)
  27. Tan S, Paglieri SN, Li D, Cat. Comm., 73, 16 (2016)
  28. Loureiro FJA, Yang T, Stroppa DG, Fagg DP, J. Mater. Chem. A., 3(24), 12636 (2015)
  29. Dixini PVM, Celante VG, Lelis MFF, Freitas MBJG, J. Power Sources, 260, 163 (2014)
  30. Zhang W, Arends IWCE, Djanashvili K, Dalton Trans., 45(36), 14019 (2016)
  31. Ikeue K, Kawano T, Eto M, Zhang D, Machida M, J. Alloy. Compd., 451(1-2), 338 (2008)
  32. Zhang D, KAwada T, Yoshioka f, Machida M, ACS Omega, 1(5), 789 (2016)
  33. Kim S, Masui T, Imanaka N, Electrochemistry, 77(8), 611 (2009)
  34. Liu F, Lian JB, Xi XG, Chu WN, Solid State Phenom., 281, 679 (2018)
  35. Lian J, Liu F, Zhang J, Yang Y, Wang X, Zhang Z, Liu F, Optik, 127(20), 8621 (2016)
  36. Li X, Lian J, Optik, 127(1), 401 (2016)
  37. Lian J, Qin H, Liang P, Liu F, Sol. State Sci., 48, 147 (2015)
  38. Lian J, Liu F, Wang X, Sun X, Powder Techn., 253, 187 (2014)
  39. Lian J, Liang P, Wang B, Liu F, J. Ceram. Process. Res., 15, 382 (2014)
  40. Xu G, Liu F, Lian J, Wu N, Zhang X, He J, Ceram. Int., 44, 19070 (2018)
  41. Andreev OV, Denisenko YG, Sal’nikova EI, Khritokhin NA, Zyryanova KS, Russ. J. Inorg. Chem., 61(3), 296 (2016)
  42. Andreev OV, Razumkova IA, Boiko AN, J. Fluor. Chem., 207, 77 (2018)
  43. Razumkova IA, J. Fluor. Chem., 205, 1 (2018)
  44. Denisenko YG, Khritokhin NA, Andreev OV, Basova SA, Sal’nikova EI, Polkovnikov AA, J. Sol. State Chem., 255, 219 (2017)
  45. Stark H, Yatavelli RLN, Thompson SL, Kang H, Krechmer JE, Kimmel JR, et al., Environ. Sci. Technol., 51(15), 8491 (2017)
  46. Povea P, Arroyo JL, Carreno G, Norambuena A, Rios PL, Camarada MB, Chavez I, Manriquez JM, Morales-Verdejo C, Thermochim. Acta, 666, 181 (2018)
  47. Liu X, Salmeia KA, Rentsch D, Hao J, Gaan S, Appl. Pyrolysis, 124, 219 (2017)
  48. Unni M, Uhl AM, Savliwala S, Savitzky BH, Dhavalikar R, Garraud N, Arnold DP, Kourkoutis LE, Andrew JS, Rinaldi C, ACS Nano., 11(2), 2284 (2017)
  49. Jambor JL, Nordstrom DK, Alpers CN, Rev. Mineral. Geochem., 40(1), 303 (2000)
  50. Suponitskii YL, Kuz’micheva GM, Eliseev AA, Russ. Chem. Rev., 57(3), 209 (1988)
  51. Ikeue K, Kawano T, Zhang D, Eto M, Machida M, Chemistry, 25(B), 30 (2007)
  52. Shen WH, Naito S, Adv. Mater. Res., 886, 196 (2014)
  53. Miura M, Hirata H, Ishibashi K, Machida M, SAE Technical Paper. (2009).
  54. Machida M, Kawano T, Eto M, Zhang D, Ikeue K, Chem. Mater., 19(4), 954 (2007)
  55. Machida M, Kawamura K, Ito K, Ikeue K, Chem. Mater., 17(6), 1487 (2005)
  56. Lidin RA, Molochko VA, Andreeva LL, Inorganic Chemistry in Reactions: a Handbook, Drofa, Moscow., (2007).
  57. Greenwood NN, Earnshaw A, Chemistry of the Elements, Elsevier, 2012.
  58. Tret’yakov YD, Martynenko LI, Grigor’ev AN, Yu A, Tsivadze, Inorganic Chemistry. Chemistry of the Elements, Textbook for Universities, Chemistry, Moscow, 2001.
  59. Heiba ZK, Akin Y, Sigmund W, Hascicek YS, J. Appl. Cryst., 36(6), 1411 (2003)
  60. Wyckoff RWG, second edition, Crystal Structures, 1, pp.85 (1963).
  61. Bruker AXS TOPAS V4: User’s Manual, Bruker AXS, Karlsruhe, Germany, 2008.
  62. McMasters OD, Gschneidner KA, Kaldis E, Sampietro G, J. Chem. Thermodyn., 6(9), 845 (1974)
  63. Eckman JR, Rossini FD, Bureau Standards J. Res., 3, 597 (1929)
  64. Hartenbach I, Schleid T, Anorg Z, Allgem. Chem., 628(9-10), 2171 (2002)
  65. Golovnev NN, Molokeev MS, Vereshchagin SN, Atuchin VV, J. Coord. Chem, 68, 1865 (2015)
  66. Nakamoto K, Infrared and Raman Spectra of Inorganic and Coordination Compounds, 6th edn., Wiley, New York etc, 2009.
  67. Wang XJ, Shi XF, Molokeev MS, Wang ZH, Zhu Q, Li XD, Sun XD, Li JG, Inorg. Chem., 57(21), 13606 (2018)
  68. Atuchin VV, Aleksandrovsky AS, Bazarov BG, Bazarova JG, Chimitova OD, et al., J. Alloy. Compd., 785, 692 (2019)