Journal of Industrial and Engineering Chemistry, Vol.79, 62-70, November, 2019
High-temperature oxidation of europium (II) sulfide
E-mail:
The process of high-temperature oxidation of EuS in the air was explored in the temperature range of 500-1000 °C. The oxidation reaction enthalpy was determined (ΔH0 exp = -1718.5 kJ/mol). The study of oxidation products allowed to establish the mechanism of EuS oxidation with oxygen. At 500-600 °C, EuS is oxidized to a mixture of Eu3+-containing compounds (Eu3S4, Eu2O2S). In the range of 700-1000 °C, only europium oxysulfate Eu2O2SO4 is formed. The structure refinement for Eu2O2SO4 was performed by the Rietveld method. The luminescence intensity of europium oxysulfate Eu2O2SO4 with characteristic 4f-4f transitions from the 5D0 state was investigated as a function of oxidation temperature.
Keywords:Sulfur-containing europium compounds;High-temperature oxidation;Thermal analysis;X-ray diffraction;Crystal structure;Photoluminescence
- Li S, Wang DTL Cho Y, Liu X, Zhou X, Lu L, Zhang L, Takeda T, Hirosaki N, Xie RJ, Chem. Mater., 30(2), 494 (2017)
- Shi XF, Wang ZH, Takei T, Wang XJ, Zhu Q, Li XD, Kim BN, Sun XD, Li JG, Inorg. Chem., 57(11), 6632 (2018)
- Li C, Fan X, Jiang P, Jin X, Mater. Lett., 222, 41 (2018)
- Baur F, Justel T, J. Lumines., 196, 431 (2018)
- Behrendt M, Mahlik S, Grinberg M, Stefanska D, Deren PJ, Opt. Mater., 63, 158 (2017)
- Puchalska M, Opt. Mater., 72, 152 (2017)
- van de Haar MA, J. Werner, N. Kratz, Hilgerink T, Tachikirt M, Honold J, Kramers MR, App. Phys. Lett., 112(13), 132101 (2018)
- Laishram R, Maitra U, Chem. Select., 3(2), 519 (2018)
- Shi P, Xia Z, Molokeev MS, Atuchin VV, AAPG Bull., 43(25), 9669 (2014)
- Atuchin VV, Aleksandrovsky AS, Chimitova OD, Gavrilova TA, Krylov AS, Molokeev MS, Oreshonkov AS, Bazarov BG, Bazarova JG, J. Phys. Chem. C, 118(28), 15404 (2014)
- Ji H, Huang Z, Xia Z, Molokeev MS, Jang X, Lin Z, Atuchin VV, Dalton Trans., 44(16), 7679 (2015)
- Denisenko YG, Aleksandrovsky AS, Atuchin VV, Krylov AS, Molokeev MS, Oreshonkov AS, Shestakov NP, Andreev OV, J. Ind. Eng. Chem., 68, 109 (2018)
- Reshak AH, Alahmed ZA, Bila J, Atuchin VV, Bazarov BG, Chimitova OD, Molokeev MS, Prosvirin IP, Yelisseyev AP, J. Phys. Chem. C, 120(19), 10559 (2016)
- Wang X, Molokeev MS, Zhu Q, Li JG, Chem. Europ. J., 23, 16034 (2017)
- Atuchin VV, Subanakov AK, Aleksandrovsky AS, Bazarov BG, Bazarova JG, Gavrilova TA, Krulov AS, Molokeev MS, Oreshonkov AS, Yu S, Mater. Des., 140, 488 (2018)
- Choi MH, Kim MK, Jo VN, Lee DW, Shim IIW, Ok KM, Bull. Korean Chem. Soc., 31(4), 1077 (2010)
- Paama L, Pitkanen I, Valkonen J, Parnoja E, Kola H, Peramaki P, Talanta, 67(5), 897 (2005)
- Yan X, DinG S, Zheng X, J. Sol. State Chem, 180(7), 2020 (2007)
- Denisenko YG, Atuchin VV, Molokeev MS, Aleksandrovsky AS, Krylov AS, Oreshonkov AS, Volkova SS, Andreev OV, Inorg. Chem., 57(21), 13279 (2018)
- Zhang X, Ma Y, Zhao H, Jiang C, Sun Y, Xu Y, J. Struct. Chem., 52(5), 954 (2011)
- Chen F, Chen G, Liu T, Zhang N, Liu X, Luo H, Li J, Chen L, Ma R, Qiu G, Sci. Reports, 5, 17934 (2015)
- Shaterian M, Rezvani MA, Shahsavandi V, Qasemi K, J. Nanostruct., 7(2), 97 (2017)
- Ma D, Li C, Wang L, Liu H, Zhong S, Li Y, J. Nanoparticle Res., 19(10), 341 (2017)
- Paul W, J. Magn. Magn. Mater., 87, 23 (1990)
- Lian JB, Sun XD, Li XD, Mater. Chem. Phys., 125(3), 479 (2011)
- Valsamakis I, Flytzani-Stephanopoulos M, Appl. Catal. B: Environ., 106(1-2), 255 (2011)
- Tan S, Paglieri SN, Li D, Cat. Comm., 73, 16 (2016)
- Loureiro FJA, Yang T, Stroppa DG, Fagg DP, J. Mater. Chem. A., 3(24), 12636 (2015)
- Dixini PVM, Celante VG, Lelis MFF, Freitas MBJG, J. Power Sources, 260, 163 (2014)
- Zhang W, Arends IWCE, Djanashvili K, Dalton Trans., 45(36), 14019 (2016)
- Ikeue K, Kawano T, Eto M, Zhang D, Machida M, J. Alloy. Compd., 451(1-2), 338 (2008)
- Zhang D, KAwada T, Yoshioka f, Machida M, ACS Omega, 1(5), 789 (2016)
- Kim S, Masui T, Imanaka N, Electrochemistry, 77(8), 611 (2009)
- Liu F, Lian JB, Xi XG, Chu WN, Solid State Phenom., 281, 679 (2018)
- Lian J, Liu F, Zhang J, Yang Y, Wang X, Zhang Z, Liu F, Optik, 127(20), 8621 (2016)
- Li X, Lian J, Optik, 127(1), 401 (2016)
- Lian J, Qin H, Liang P, Liu F, Sol. State Sci., 48, 147 (2015)
- Lian J, Liu F, Wang X, Sun X, Powder Techn., 253, 187 (2014)
- Lian J, Liang P, Wang B, Liu F, J. Ceram. Process. Res., 15, 382 (2014)
- Xu G, Liu F, Lian J, Wu N, Zhang X, He J, Ceram. Int., 44, 19070 (2018)
- Andreev OV, Denisenko YG, Sal’nikova EI, Khritokhin NA, Zyryanova KS, Russ. J. Inorg. Chem., 61(3), 296 (2016)
- Andreev OV, Razumkova IA, Boiko AN, J. Fluor. Chem., 207, 77 (2018)
- Razumkova IA, J. Fluor. Chem., 205, 1 (2018)
- Denisenko YG, Khritokhin NA, Andreev OV, Basova SA, Sal’nikova EI, Polkovnikov AA, J. Sol. State Chem., 255, 219 (2017)
- Stark H, Yatavelli RLN, Thompson SL, Kang H, Krechmer JE, Kimmel JR, et al., Environ. Sci. Technol., 51(15), 8491 (2017)
- Povea P, Arroyo JL, Carreno G, Norambuena A, Rios PL, Camarada MB, Chavez I, Manriquez JM, Morales-Verdejo C, Thermochim. Acta, 666, 181 (2018)
- Liu X, Salmeia KA, Rentsch D, Hao J, Gaan S, Appl. Pyrolysis, 124, 219 (2017)
- Unni M, Uhl AM, Savliwala S, Savitzky BH, Dhavalikar R, Garraud N, Arnold DP, Kourkoutis LE, Andrew JS, Rinaldi C, ACS Nano., 11(2), 2284 (2017)
- Jambor JL, Nordstrom DK, Alpers CN, Rev. Mineral. Geochem., 40(1), 303 (2000)
- Suponitskii YL, Kuz’micheva GM, Eliseev AA, Russ. Chem. Rev., 57(3), 209 (1988)
- Ikeue K, Kawano T, Zhang D, Eto M, Machida M, Chemistry, 25(B), 30 (2007)
- Shen WH, Naito S, Adv. Mater. Res., 886, 196 (2014)
- Miura M, Hirata H, Ishibashi K, Machida M, SAE Technical Paper. (2009).
- Machida M, Kawano T, Eto M, Zhang D, Ikeue K, Chem. Mater., 19(4), 954 (2007)
- Machida M, Kawamura K, Ito K, Ikeue K, Chem. Mater., 17(6), 1487 (2005)
- Lidin RA, Molochko VA, Andreeva LL, Inorganic Chemistry in Reactions: a Handbook, Drofa, Moscow., (2007).
- Greenwood NN, Earnshaw A, Chemistry of the Elements, Elsevier, 2012.
- Tret’yakov YD, Martynenko LI, Grigor’ev AN, Yu A, Tsivadze, Inorganic Chemistry. Chemistry of the Elements, Textbook for Universities, Chemistry, Moscow, 2001.
- Heiba ZK, Akin Y, Sigmund W, Hascicek YS, J. Appl. Cryst., 36(6), 1411 (2003)
- Wyckoff RWG, second edition, Crystal Structures, 1, pp.85 (1963).
- Bruker AXS TOPAS V4: User’s Manual, Bruker AXS, Karlsruhe, Germany, 2008.
- McMasters OD, Gschneidner KA, Kaldis E, Sampietro G, J. Chem. Thermodyn., 6(9), 845 (1974)
- Eckman JR, Rossini FD, Bureau Standards J. Res., 3, 597 (1929)
- Hartenbach I, Schleid T, Anorg Z, Allgem. Chem., 628(9-10), 2171 (2002)
- Golovnev NN, Molokeev MS, Vereshchagin SN, Atuchin VV, J. Coord. Chem, 68, 1865 (2015)
- Nakamoto K, Infrared and Raman Spectra of Inorganic and Coordination Compounds, 6th edn., Wiley, New York etc, 2009.
- Wang XJ, Shi XF, Molokeev MS, Wang ZH, Zhu Q, Li XD, Sun XD, Li JG, Inorg. Chem., 57(21), 13606 (2018)
- Atuchin VV, Aleksandrovsky AS, Bazarov BG, Bazarova JG, Chimitova OD, et al., J. Alloy. Compd., 785, 692 (2019)