화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.79, 370-382, November, 2019
Bifunctional NiCo2Se4 and CoNi2Se4 nanostructures: Efficient electrodes for battery-type supercapacitors and electrocatalysts for the oxygen evolution reaction
E-mail:
We report the fabrication of bimetallic NiCo2Se4 and CoNi2Se4 nanostructures on nickel-foam (Ni-foam) substrates via a potentiostatic-deposition method by adjusting the molar ratio of Ni and Co metals. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) analyses show that burl-like clusters with characteristic fluffy NiCo2Se4 and flake-like CoNi2Se4 hierarchical structures were deposited on the Ni-foam substrates. When used as battery-type electrodes in supercapacitors, both NiCo2Se4 and CoNi2Se4 electrodes exhibited outstanding capacity and good electrochemical properties. The CoNi2Se4 electrode delivered excellent capacity and cycling stability (602 C g-1 at 1 A g-1 and 98.30% retention after 5000 cycles at 40 A g-1) when compared to the NiCo2Se4 electrode (353 C g-1 at 1 A g-1 and 96.83% retention after 5000 cycles at 40 A g-1). Furthermore, as-deposited NiCo2Se4 and CoNi2Se4 hierarchical structures were employed as efficient electrocatalysts for water oxidation in alkaline solutions. NiCo2Se4 and CoNi2Se4 electrocatalysts showed low overpotentials of 257 and 244 mV in a 1.0 M KOH aqueous solution, respectively. The electrocatalysts also exhibited prolonged stability (NiCo2Se4 and CoNi2Se4 maintained currents of 95.6% and 97.5%, respectively, over 10 h), which makes them comparable to well-known Ni and Co-based catalysts. Collectively, the as-deposited NiCo2Se4 and CoNi2Se4 are the most efficient bifunctional electrodes and electrocatalysts for application in battery- type supercapacitors and the oxygen evolution reaction, respectively, and can potentially be applied for energy conversion and storage processes.
  1. Zhang Y, Li L, Su H, Huang W, Dong X, J. Mater. Chem. A, 3, 43 (2015)
  2. Chen D, Wang Q, Wang R, Shen G, J. Mater. Chem. A, 3, 10158 (2015)
  3. Yuan C, Wu HB, Xie Y, Lou XW, Chem. Int. Ed., 53, 1488 (2014)
  4. Choi H, Nahm C, Kim J, Kim C, Kang S, Hwang T, Park B, Curr. Appl. Phys., 13, S2 (2013)
  5. Kirubakaran A, Jain S, Nema RK, Sust. Energ. Rev., 13, 2430 (2009)
  6. Suen NT, Hung SF, Quan Q, Zhang N, Xu YJ, Chen HM, Soc. Rev., 46, 337 (2017)
  7. Tahira M, Pan L, Idrees F, Zhang X, Wang L, Zou JJ, Wang ZL, Nano Energy, 37, 136 (2017)
  8. Sapountzi FM, Gracia JM, Weststrate CJ, Fredriksson HOA, Niemantsverdriet JW, Prog. Energy Combust. Sci., 58, 1 (2017)
  9. Zeng M, Li Y, J. Mater. Chem. A, 3, 14942 (2015)
  10. Gogotsi Y, Penner RM, ACS Nano, 12, 2081 (2018)
  11. Laheaar A, Przygocki P, Abbas Q, Beguin F, Electrochem. Commun., 60, 21 (2015)
  12. Simon P, Gogotsi Y, Dunn B, Science, 343(6176), 1210 (2014)
  13. Geng P, Zheng S, Tang H, Zhu R, Zhang L, Cao S, Xue H, Pang H, Adv. Energy Mater., 1703259 (2018).
  14. Yu XY, Lou XW, Adv. Energy Mater., 8, 170159 (2018)
  15. Lu T, Dong S, Zhang C, Zhang L, Cui G, Coord. Chem. Rev., 332, 75 (2017)
  16. Wang T, Zhao B, Jiang H, Yang HP, Zhang K, Yuen MMF, Fu XZ, Sun R, Wong CP, J. Mater. Chem. A, 3, 23035 (2015)
  17. Gao F, Xu BY, Wang QH, Cai FX, He SY, Zhang MS, Wang QX, J. Mater. Sci., 51(23), 10641 (2016)
  18. Wang Q, Ma Y, Wu Y, Zhang D, Miao M, ChemSusChem, 10, 1427 (2017)
  19. Chen H, Chen S, Fan M, Li C, Chen D, Tian G, Shu K, J. Mater. Chem. A, 3, 23653 (2015)
  20. Katsounaros I, Cherevko S, Zeradjanin AR, Mayrhofer KJJ, Angew. Chem.-Int. Edit., 53, 102 (2014)
  21. Eftekhari A, Mater. Today Energy, 5, 37 (2017)
  22. An W, Liu L, Gao Y, Liu Y, Liu J, RSC Adv., 6, 75251 (2016)
  23. Xia C, Jiang Q, Zhao C, Beaujuge PM, Alshareef HN, Nano Energy, 24, 78 (2016)
  24. Li Y, Xu LS, Jia MY, Cui LL, Gao JM, Jin XJ, J. Electrochem. Soc., 165(9), E303 (2018)
  25. Amin BG, Swesi AT, Masud J, Nath M, Chem. Commun., 53, 5412 (2017)
  26. Fang Z, Peng L, Lv H, Zhu Y, Yan C, Wang S, Kalyani P, Wu X, Yu G, ACS Nano, 11, 9550 (2017)
  27. Ao K, Dong J, Fan C, Wang D, Cai Y, Li D, Huang F, Wei Q, ACS Sustain. Chem. Eng., 6, 10952 (2018)
  28. Yu J, Tian Y, Zhou F, Zhang M, Chen R, Liu Q, Liu J, Xu CY, Wang J, J. Mater. Chem. A, 6, 17353 (2018)
  29. Akbar K, Jeon JH, Kim M, Jeong J, Yi Y, Chun SH, ACS Sustain. Chem. Eng., 6, 7735 (2018)
  30. Chen T, Li S, Gui P, Wen J, Fu X, Fang G, Nanotechnology, 29, 205401 (2018)
  31. Du L, Du W, Ren H, Wang N, Yao Z, Shi X, Zhang B, Zai J, Qian X, J. Mater. Chem. A, 5, 22527 (2017)
  32. Liao M, Zeng GF, Luo TT, Jin ZY, Wang YJ, Kou XM, Xiao D, Electrochim. Acta, 194, 59 (2016)
  33. Quy VHV, Park JH, Kang SH, Kim HS, Ahn KS, J. Ind. Eng. Chem., 70, 322 (2019)
  34. Chen W, Xia C, Alshareef HN, ACS Nano, 8, 9531 (2014)
  35. Zhou W, Cao X, Zeng Z, Shi W, Zhu Y, Yan Q, Liu H, Wang J, Zhang H, Energy Environ. Sci., 6, 2216 (2013)
  36. Xia X, Zhu C, Luo J, Zeng Z, Guan C, Ng CF, Zhang H, Fan HJ, Small, 10, 766 (2014)
  37. Yu L, Zhang L, Wu HB, Lou XW, Angew. Chem.-Int. Edit., 53, 3711 (2014)
  38. Xu Y, Wang X, An C, Wang Y, Jiao L, Yuan H, J. Mater. Chem. A, 2, 16480 (2014)
  39. Meher SK, Rao GR, J. Phys. Chem. C, 115, 25543 (2011)
  40. Xiao YH, Zhang AQ, Liu SJ, Zhao JH, Fang SM, Jia DZ, Li F, J. Power Sources, 219, 140 (2012)
  41. Vijayakumar S, Nagamuthu S, Ryu KS, Electrochim. Acta, 238, 99 (2017)
  42. Liang HY, Lin JH, Jia HN, Chen SL, Qi JL, Cao J, Lin TS, Fei WD, Feng JC, J. Power Sources, 378, 248 (2018)
  43. Jiang W, Hu F, Yan Q, Wu X, Inorg. Chem. Front., 4, 1642 (2017)
  44. Liu S, Hui KS, Hui KN, Yun JM, Kim KH, J. Mater. Chem. A, 4, 8061 (2016)
  45. Rajesh JA, Park JH, Quy VHV, Kwon JM, Chae JY, Kang SH, Kim HS, Ahn KS, J. Ind. Eng. Chem., 63, 73 (2018)
  46. Chen T, Li S, Gui P, Wen J, Fu X, Fang G, Nanotechnology, 29, 205401 (2018)
  47. Li D, Gong Y, Pan C, Sci. Rep., 6, 29788 (2016)
  48. Zhao X, Gao P, Yan Y, Li X, Xing Y, Li H, Peng Z, Yang J, Zeng J, J. Mater. Chem. A, 5, 20202 (2017)
  49. Du J, Zou Z, Yu A, Xu C, Dalton Trans., 47, 7492 (2018)