Journal of Industrial and Engineering Chemistry, Vol.79, 370-382, November, 2019
Bifunctional NiCo2Se4 and CoNi2Se4 nanostructures: Efficient electrodes for battery-type supercapacitors and electrocatalysts for the oxygen evolution reaction
E-mail:
We report the fabrication of bimetallic NiCo2Se4 and CoNi2Se4 nanostructures on nickel-foam (Ni-foam) substrates via a potentiostatic-deposition method by adjusting the molar ratio of Ni and Co metals. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) analyses show that burl-like clusters with characteristic fluffy NiCo2Se4 and flake-like CoNi2Se4 hierarchical structures were deposited on the Ni-foam substrates. When used as battery-type electrodes in supercapacitors, both NiCo2Se4 and CoNi2Se4 electrodes exhibited outstanding capacity and good electrochemical properties. The CoNi2Se4 electrode delivered excellent capacity and cycling stability (602 C g-1 at 1 A g-1 and 98.30% retention after 5000 cycles at 40 A g-1) when compared to the NiCo2Se4 electrode (353 C g-1 at 1 A g-1 and 96.83% retention after 5000 cycles at 40 A g-1). Furthermore, as-deposited NiCo2Se4 and CoNi2Se4 hierarchical structures were employed as efficient electrocatalysts for water oxidation in alkaline solutions. NiCo2Se4 and CoNi2Se4 electrocatalysts showed low overpotentials of 257 and 244 mV in a 1.0 M KOH aqueous solution, respectively. The electrocatalysts also exhibited prolonged stability (NiCo2Se4 and CoNi2Se4 maintained currents of 95.6% and 97.5%, respectively, over 10 h), which makes them comparable to well-known Ni and Co-based catalysts. Collectively, the as-deposited NiCo2Se4 and CoNi2Se4 are the most efficient bifunctional electrodes and electrocatalysts for application in battery- type supercapacitors and the oxygen evolution reaction, respectively, and can potentially be applied for energy conversion and storage processes.
Keywords:Transition metal selenides;Battery-type electrode;Supercapacitor;Electrocatalyst;Oxygen evolution
- Zhang Y, Li L, Su H, Huang W, Dong X, J. Mater. Chem. A, 3, 43 (2015)
- Chen D, Wang Q, Wang R, Shen G, J. Mater. Chem. A, 3, 10158 (2015)
- Yuan C, Wu HB, Xie Y, Lou XW, Chem. Int. Ed., 53, 1488 (2014)
- Choi H, Nahm C, Kim J, Kim C, Kang S, Hwang T, Park B, Curr. Appl. Phys., 13, S2 (2013)
- Kirubakaran A, Jain S, Nema RK, Sust. Energ. Rev., 13, 2430 (2009)
- Suen NT, Hung SF, Quan Q, Zhang N, Xu YJ, Chen HM, Soc. Rev., 46, 337 (2017)
- Tahira M, Pan L, Idrees F, Zhang X, Wang L, Zou JJ, Wang ZL, Nano Energy, 37, 136 (2017)
- Sapountzi FM, Gracia JM, Weststrate CJ, Fredriksson HOA, Niemantsverdriet JW, Prog. Energy Combust. Sci., 58, 1 (2017)
- Zeng M, Li Y, J. Mater. Chem. A, 3, 14942 (2015)
- Gogotsi Y, Penner RM, ACS Nano, 12, 2081 (2018)
- Laheaar A, Przygocki P, Abbas Q, Beguin F, Electrochem. Commun., 60, 21 (2015)
- Simon P, Gogotsi Y, Dunn B, Science, 343(6176), 1210 (2014)
- Geng P, Zheng S, Tang H, Zhu R, Zhang L, Cao S, Xue H, Pang H, Adv. Energy Mater., 1703259 (2018).
- Yu XY, Lou XW, Adv. Energy Mater., 8, 170159 (2018)
- Lu T, Dong S, Zhang C, Zhang L, Cui G, Coord. Chem. Rev., 332, 75 (2017)
- Wang T, Zhao B, Jiang H, Yang HP, Zhang K, Yuen MMF, Fu XZ, Sun R, Wong CP, J. Mater. Chem. A, 3, 23035 (2015)
- Gao F, Xu BY, Wang QH, Cai FX, He SY, Zhang MS, Wang QX, J. Mater. Sci., 51(23), 10641 (2016)
- Wang Q, Ma Y, Wu Y, Zhang D, Miao M, ChemSusChem, 10, 1427 (2017)
- Chen H, Chen S, Fan M, Li C, Chen D, Tian G, Shu K, J. Mater. Chem. A, 3, 23653 (2015)
- Katsounaros I, Cherevko S, Zeradjanin AR, Mayrhofer KJJ, Angew. Chem.-Int. Edit., 53, 102 (2014)
- Eftekhari A, Mater. Today Energy, 5, 37 (2017)
- An W, Liu L, Gao Y, Liu Y, Liu J, RSC Adv., 6, 75251 (2016)
- Xia C, Jiang Q, Zhao C, Beaujuge PM, Alshareef HN, Nano Energy, 24, 78 (2016)
- Li Y, Xu LS, Jia MY, Cui LL, Gao JM, Jin XJ, J. Electrochem. Soc., 165(9), E303 (2018)
- Amin BG, Swesi AT, Masud J, Nath M, Chem. Commun., 53, 5412 (2017)
- Fang Z, Peng L, Lv H, Zhu Y, Yan C, Wang S, Kalyani P, Wu X, Yu G, ACS Nano, 11, 9550 (2017)
- Ao K, Dong J, Fan C, Wang D, Cai Y, Li D, Huang F, Wei Q, ACS Sustain. Chem. Eng., 6, 10952 (2018)
- Yu J, Tian Y, Zhou F, Zhang M, Chen R, Liu Q, Liu J, Xu CY, Wang J, J. Mater. Chem. A, 6, 17353 (2018)
- Akbar K, Jeon JH, Kim M, Jeong J, Yi Y, Chun SH, ACS Sustain. Chem. Eng., 6, 7735 (2018)
- Chen T, Li S, Gui P, Wen J, Fu X, Fang G, Nanotechnology, 29, 205401 (2018)
- Du L, Du W, Ren H, Wang N, Yao Z, Shi X, Zhang B, Zai J, Qian X, J. Mater. Chem. A, 5, 22527 (2017)
- Liao M, Zeng GF, Luo TT, Jin ZY, Wang YJ, Kou XM, Xiao D, Electrochim. Acta, 194, 59 (2016)
- Quy VHV, Park JH, Kang SH, Kim HS, Ahn KS, J. Ind. Eng. Chem., 70, 322 (2019)
- Chen W, Xia C, Alshareef HN, ACS Nano, 8, 9531 (2014)
- Zhou W, Cao X, Zeng Z, Shi W, Zhu Y, Yan Q, Liu H, Wang J, Zhang H, Energy Environ. Sci., 6, 2216 (2013)
- Xia X, Zhu C, Luo J, Zeng Z, Guan C, Ng CF, Zhang H, Fan HJ, Small, 10, 766 (2014)
- Yu L, Zhang L, Wu HB, Lou XW, Angew. Chem.-Int. Edit., 53, 3711 (2014)
- Xu Y, Wang X, An C, Wang Y, Jiao L, Yuan H, J. Mater. Chem. A, 2, 16480 (2014)
- Meher SK, Rao GR, J. Phys. Chem. C, 115, 25543 (2011)
- Xiao YH, Zhang AQ, Liu SJ, Zhao JH, Fang SM, Jia DZ, Li F, J. Power Sources, 219, 140 (2012)
- Vijayakumar S, Nagamuthu S, Ryu KS, Electrochim. Acta, 238, 99 (2017)
- Liang HY, Lin JH, Jia HN, Chen SL, Qi JL, Cao J, Lin TS, Fei WD, Feng JC, J. Power Sources, 378, 248 (2018)
- Jiang W, Hu F, Yan Q, Wu X, Inorg. Chem. Front., 4, 1642 (2017)
- Liu S, Hui KS, Hui KN, Yun JM, Kim KH, J. Mater. Chem. A, 4, 8061 (2016)
- Rajesh JA, Park JH, Quy VHV, Kwon JM, Chae JY, Kang SH, Kim HS, Ahn KS, J. Ind. Eng. Chem., 63, 73 (2018)
- Chen T, Li S, Gui P, Wen J, Fu X, Fang G, Nanotechnology, 29, 205401 (2018)
- Li D, Gong Y, Pan C, Sci. Rep., 6, 29788 (2016)
- Zhao X, Gao P, Yan Y, Li X, Xing Y, Li H, Peng Z, Yang J, Zeng J, J. Mater. Chem. A, 5, 20202 (2017)
- Du J, Zou Z, Yu A, Xu C, Dalton Trans., 47, 7492 (2018)