화학공학소재연구정보센터
Clean Technology, Vol.25, No.3, 179-188, September, 2019
석탄화력발전소에서 발생되는 비회로부터 유용성분의 회수
Recycling of useful Materials from Fly Ash of Coal-fired Power Plant
E-mail:
초록
석탄화력 발전시 석탄은 석탄회로 발생하게 되는데 비회(fly ash)가 80%, 저회(bottom ash)가 20% 비율로 발생된다. 그러나 이들 대부분은 재활용되지 못하고 매립장에 전량 폐기되고 있고, 비회 및 저희를 매립하는 매립장이 포화될 경우 새로운 대체 매립장을 건설하지 못하는 한 석탄화력발전소의 운영을 중지해야 하는 경우가 발생할 수 있다. 본 연구에서는 비회를 재활용하여 자원화하기 위해 습식 부유선별기술(부선과정)을 이용하여 비회 내 유용성분{미연탄소(unburned carbon, UC), 뮬라이트(ceramic microsphere, CM), 실리카(cleaned ash, CA)}을 회수하였으며, 회수된 유용성분들의 특성분석으로 산업 소재로 재활용 가능성을 조사하였다. 비회로부터 회수된 유용성분의 회수율은 UC 92.10%, CM 75.75%, CA 69.71%로 부선과정을 통하여 UC가 다른 성분보다 회수율이 16 ~ 22% 더 우수한 것으로 나타났다. UC의 연소가능성분(combustible component, CC)은 52.54wt%, 발열량도 4,232 kcal kg-1로 높아서 석탄 기준 C의 함량 100%일 경우 8,100 kcal kg-1로 감안할 때 산업용 연료로 사용이 가능할 것으로 사료된다. CM과 CA의 분리는 pH의 영향으로 UC 보다는 화학적 분리가 효과적이 었으며, 회수된 CA의 SiO2 함량은 78.66wt%, CM의 SiO2 함량은 53.55wt%로 나타나 산업용 소재로 재활용 가능성을 확인 할 수 있었다.
Upon the combustion of coal particles in a coal-fired power plant, fly ash (80%) and bottom ash (20%) are unavoidably produced. Most of the ashes are, however, just dumped onto a landfill site. When the landfill site that takes the fly ash and bottom ash is saturated, further operation of the coal-fired power plant might be discontinued unless a new alternative landfill site is prepared. In this study, wet flotation separation system (floating process) was employed in order to recover unburned carbon (UC), ceramic microsphere (CM) and cleaned ash (CA), all of which serving as useful components within fly ash. The average recovered fractions of UC, CM, and CA from fly ash were 92.10, 75.75, and 69.71, respectively, while the recovered fractions of UC were higher than those of CM and CA by 16% and 22%, respectively. The combustible component (CC) within the recovered UC possessed a weight percentage as high as 52.54wt%, whereas the burning heat of UC was estimated to be 4,232 kcal kg-1. As more carbon-containing UC is recovered from fly ash, UC is expected to be used successfully as an industrial fuel. Owing to the effects of pH, more efficient chemical separations of CM and CA, rather than UC, were obtained. The average SiO2 contents within the separated CM and CA had a value of 53.55wt% and 78.66wt%, respectively, which is indicative of their plausible future application as industrial materials in many fields.
  1. Zyrkowski M, Neto RC, Santos LF, Witkowski K, Fuel, 174, 49 (2016)
  2. Ahmaruzzaman M, Prog. Energy Combust. Sci., 36(3), 327 (2010)
  3. Maeng JH, Kim TY, Suh DH, Korea Environ. Inst. (2014).
  4. Yao ZT, Ji XS, Sarker PK, Tang JH, Ge LQ, Xia MS, Xi YQ, Earth-Sci. Rev., 141, 105 (2015)
  5. Cho H, Maeng JH, Kim EY, J. Environ. Impact Assess., 26(6), 563 (2017)
  6. Suh DH, Maeng JH, J. Environ. Impact Assess., 24(5), 472 (2015)
  7. Na CK, Kim SB, J. Korea Soc. Waste Manage, 21(4), 328 (2004)
  8. Kim WY, Ji HB, Yang TY, Yoon SY, Park HC, J. Korean Ceram. Soc., 47, 151 (2010)
  9. Seho SL, Lee YS, An EM, Cho SB, J. Korean Inst. Resour. Recycl., 23(1), 40 (2014)
  10. Jeon HS, Lee ES, Baek SH, Kim BG, J. Korean Soc. Miner. Energy Resour. Eng., 53(3), 219 (2016)
  11. Choi HK, Kim SG, Kim BG, Jeon HS, J. Korean Soc. Miner. Energy Resour. Eng., 52(5), 469 (2015)
  12. Demir U, Yamik A, Kelebek S, Oteyaka B, Ucar A, Sahbaz O, Fuel, 87(6), 666 (2008)
  13. Altun NE, Xiao CF, Hwang JY, Fuel Process. Technol., 90(12), 1464 (2009)
  14. Zhou F, Yan CJ, Wang HQ, Zhou S, Liang H, Fuel, 190, 182 (2017)
  15. Han G, Yang S, Peng W, Huang Y, Wu H, Chai W, Liu J, J. Clean Prod., 178, 804 (2018)
  16. Aksay IA, Dabbs DM, Sarikaya M, J. Am. Ceram. Soc., 74, 2343 (1991)