화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.30, No.5, 556-561, October, 2019
석유 부산물의 물리화학적 분석을 통한 화재폭발 특성연구
Study on Fire Explosion Characteristics via Physico-chemical Analysis of Petroleum Residues
E-mail:
초록
본 연구에서는 석유 부산물인 열분해잔사유의 화재, 폭발특성을 파악하기 위하여 그 물리.화학적 분석을 실시하고 주요 성분을 선정하였다. GC-SIMDIS 및 MALDI-TOF 분석을 통해 열분해잔사유의 주요 성분 분포영역을 확인하였으며, GC-MS 분석을 통해 주요 성분 분포영역에 대한 정성분석을 실시하였다. 아울러 EA, SARA, TGA 등 다양한 분석결과를 바탕으로 열분해잔사유의 주요 성분을 선정하였다. 그 결과 benzene, toluene, xylene을 주요 성분을 선정하여 PHAST 분석을 통한 화재.폭발 시 최대 피해영향범위를 고찰하였다. Toluene은 제트 화재 발생 시 227 kW/m2의 복사열 및 118 m의 영향범위를 나타내어 가장 높은 위험성을 보였으며, xylene과 benzene은 각각 114와 151 kW/m2의 최대복사열 수치를 나타내었다, 또한, pasquill 안정도 및 풍속에 따른 피해영향범위를 분석한 결과 benzene에서 풍속에 따라 최대 55% 이상의 복사열이 증가함을 확인하였으며, 이는 영향범위를 증가시키는 주요인자인 것으로 여겨졌다.
In this study, the physical and chemical analyses of petroleum residues (pyrolized fuel oil, PFO) were conducted and major components were selected to investigate their fire and explosion characteristics. Major component distribution areas of the PFO were identified via the GC-SIMDIS and MALDI-TOF analyses. In addition, the qualitative analysis of major component distribution areas was performed by GC-MS analysis. Major components of pyrolysis residue were selected based on the results of various analyses such as EA, SARA and TGA. As a result, benzene, toluene and xylene were selected as major components. Finally, the process hazard analysis software tool (PHAST) analysis was performed to investigate the range of maximum damage effect in case of fire and explosion. Toluene presented the highest risk due to the radiation effect of 227 kW/m2 and 118 m in the case of jet fire. Xylene and benzene showed the maximum radiant heat values of 114 and 151 kW/m2, respectively. It was also confirmed from the analysis of pasquill stability and wind speed that the radiant heat increased up to 55% according to wind speed in benzene, which was considered to be a main factor increasing the influence range.
  1. Lee K, Kwon HM, Cho S, Kim J, Moon I, J. Loss Prev. Process Ind., 42, 6 (2016)
  2. Lim H, Um K, Jung S, J. Loss Prev. Process Ind., 49, 636 (2017)
  3. Lee KO, Park JY, Lee CJ, Korean J. Chem. Eng., 35(2), 348 (2018)
  4. Kim JH, Kim JG, Lee CW, Lee KB, Im JS, Carbon lett., 23, 48 (2017)
  5. Kim JG, Kim JH, Song BJ, Lee CW, Im JS, J. Ind. Eng. Chem., 36, 293 (2016)
  6. Kim JG, Kim JH, Im JS, Lee YS, Bae TS, J. Ind. Eng. Chem., 62, 176 (2018)
  7. Kim JG, Kim JH, Song BJ, Lee CW, Lee YS, Im JS, Fuel, 186, 20 (2016)
  8. Bai BC, Kim JG, Kim JH, Lee CW, Lee YS, Im JS, Carbon lett., 25, 78 (2018)
  9. Kim JG, Kim JH, Song BJ, Jeon YP, Lee CW, Lee YS, Im JS, Fuel, 167, 25 (2016)
  10. Kim JH, Kim JG, Lee KH, Im JS, Carbon lett., 29, 203 (2019)
  11. Wang J, Wang T, Hou X, Xiao F, Fuel, 328, 320 (2019)
  12. Edwards WF, Jin L, Thise MC, Carbon, 41, 2761 (2003)
  13. Zhou K, Liu J, Jiang J, Appl. Therm. Eng., 105, 634 (2016)
  14. Shui HF, Feng YT, Shen BX, Gao JS, Fuel Process. Technol., 55(2), 153 (1998)
  15. Shishesaz MR, Bajestani MN, Hashemi SJ, Shekari E, Int. J. Press. Vessels Piping, 111-112, 202 (2013)