화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.29, No.10, 586-591, October, 2019
Doping Effect of Yb2O3 on Varistor Properties of ZnO-V2O5-MnO2-Nb2O5 Ceramic Semiconductors
E-mail:
This study describes the doping effect of Yb2O3 on microstructure, electrical and dielectric properties of ZnO-V2O5- MnO2-Nb2O5 (ZVMN) ceramic semiconductors sintered at a temperature as low as 900°C. As the doping content of Yb2O3 increases, the ceramic density slightly increases from 5.50 to 5.54 g/cm3; also, the average ZnO grain size is in the range of 5.3-5.6 μm. The switching voltage increases from 4,874 to 5,494 V/cm when the doping content of Yb2O3 is less than 0.1 mol%, whereas further doping decreases this value. The ZVMN ceramic semiconductors doped with 0.1 mol% Yb2O3 reveal an excellent nonohmic coefficient as high as 70. The donor density of ZnO gain increases in the range of 2.46-7.41×1017 cm?3 with increasing doping content of Yb2O3 and the potential barrier height and surface state density at the grain boundaries exhibits a maximum value (1.25 eV) at 0.1 mol%. The dielectric constant (at 1 kHz) decreases from 592.7 to 501.4 until the doping content of Yb2O3 reaches 0.1 mol%, whereas further doping increases it. The value of tanδ increases from 0.209 to 0.268 with the doping content of Yb2O3.
  1. Matsuoka M, Jpn. J. Appl. Phys., 10, 736 (1971)
  2. Levinson LM, Philipp HR, Am. Ceram. Soc. Bull., 65, 369 (1986)
  3. Gupta TK, J. Am. Ceram. Soc., 73, 1817 (1990)
  4. Pilipp HR, Levinson LM, J. Appl. Phys., 46, 1332 (1976)
  5. Mukae K, Am. Ceram. Bull., 66, 1329 (1987)
  6. Nahm CW, Park CH, J. Mater. Sci., 35(12), 3037 (2000)
  7. Tsai JK, Wu TB, J. Appl. Phys., 76, 481 (1994)
  8. Tsai JK, Wu TB, Mater. Lett., 26, 199 (1996)
  9. Nahm CW, J. Am. Ceram. Soc., 94(8), 2269 (2011)
  10. Nahm CW, J. Mater. Sci.: Mater. Electron., 22, 444 (2011)
  11. Nahm CW, Microelectron. Reliability, 54, 2836 (2014)
  12. Nahm CW, J. Mater. Sci.: Mater. Electron., 23, 457 (2012)
  13. Chen CS, J. Mater. Sci., 38(5), 1033 (2003)
  14. Pfeiffer H, Knowles KM, J. European Ceram. Soc., 24, 1199 (2004)
  15. Zhao M, Liu XC, Wang WM, Gao F, Tian CS, Ceram. Int., 34, 1425 (2008)
  16. Ming Z, Yu S, Sheng TC, J. European Ceram. Soc., 31, 2331 (2011)
  17. Mirzayi M, Hekmatshoar MH, Phys. B, 414, 50 (2013)
  18. Nahm CW, J. Alloy. Compd., 578, 132 (2013)
  19. Nahm CW, J. Korean Ceram. Soc., 55, 504 (2018)
  20. Wurst JC, Nelson JA, J. Am. Ceram. Soc., 55, 109 (1972)
  21. Mukae M, Tsuda K, Nagasawa I, J. Appl. Phys., 50, 447 (1979)