Journal of Industrial and Engineering Chemistry, Vol.80, 325-334, December, 2019
Tuning the band energetics of size dependent titania nanostructures for improved photo-reductive efficiency of aromatic aldehydes
E-mail:
Mono-dispersed and smaller sized TiO2 nanospheres (-8 nm and -20 nm) exhibited superior photo-reductive efficiency for few aromatic aldehydes under UV light. It has been found that p-nitrobenzaldehyde and benzaldehyde are efficiently reduced to p-aminobenzyl alcohol (80% and 61%) and benzyl alcohol (59% and 38%) by 8 nm and 20 nm particles respectively, relative to negligible reduction by TiO2 (P25) under same experimental conditions. However, the successful photo-reduction of p-nitrotoluene (97%) was observed with P25 whose reduction potential (?0.5 eV) lies below the conduction band (CB, -0.85 eV vs NHE) of the catalyst. These findings can be explained on the basis of unsuitable and mismatched CB of P25 with respect to the lowest unoccupied molecular orbital of -CHO group to access its photo-activity. However, this hydrogenation occurred by synthesized smaller sized TiO2 particles (-8 nm and -20 nm) due to their favorable band gap (3.85 eV and 3.62 eV) and conduction band edge (-0.61 eV and -0.50 eV). Moreover, the other physio-chemical characteristics of 8 nm and 20 nm sized particles such as surface area (323 m2 g-1 and 297 m2 g-1), higher charge carrier relaxation time (61 μs and 40 μs) are also co-related for ease of photo-activity relative to TiO2 (P25).
Keywords:Size-dependent reduction;Band energetics tuning;Mono-dispersed TiO2 nanospheres;Photocatalytic;Aldehydes;Hydrogenation
- Ismail AA, Hakki A, Bahnemann DW, J. Mol. Catal. A-Chem., 358, 145 (2012)
- Di Paola A, Marci G, Palmisano L, Schiavello M, Uosaki K, Ikeda S, Ohtani B, J. Phys. Chem. B, 106(3), 637 (2002)
- Shiraishi Y, Togawa Y, Tsukamoto D, Tanaka S, Hirai T, ACS Catal., 2, 2475 (2012)
- Kaur J, Pal B, Chem. Commun., 51, 8500 (2015)
- Rase HF, Handbook of commercial catalysts: heterogeneous catalysts CRC Press, 2016.
- Jayesh T, Itika K, Babu GR, Rao KR, Keri R, Jadhav AH, Nagaraja B, Catal. Commun., 106, 73 (2018)
- Han M, Zhang H, Du Y, Yang P, Deng Z, React. Kinet. Mech. Catal., 102, 393 (2010)
- Divakar D, Manikandan D, Kalidoss G, Sivakumar T, Catal. Lett., 125(3-4), 277 (2008)
- Yang ZH, Bai XG, Zhou L, Wang JX, Liu HT, Wang YC, Bioorg. Med. Chem. Lett., 25, 1880 (2015)
- Gallezot P, Richard D, Catal. Rev.-Sci. Eng., 40(1-2), 81 (1998)
- Claus P, Top. Catal., 5, 51 (1998)
- Bai X, Yang Z, Zhu M, Dong B, Zhou L, Zhang G, Wang J, Wang Y, Eur. J. Med. Chem., 137, 30 (2017)
- Wang YA, Deng YQ, Shi F, J. Mol. Catal. A-Chem., 395, 195 (2014)
- Prochazkova D, Zamostny P, Bejblova M, Cerveny L, Cejka J, Appl. Catal. A: Gen., 332(1), 56 (2007)
- Mokhov V, Popov YV, Nebykov D, Russ. J. Gen. Chem., 84, 1656 (2014)
- Ding Y, Li XH, Pan HY, Wu P, Catal. Lett., 144(2), 268 (2014)
- Mironenko RM, Belskaya OB, Gulyaeva TI, Trenikhin MV, Nizovskii AI, Kalinkin AV, Bukhtiyarov VI, Lavrenov AV, Likholobov VA, Catal. Today, 279, 2 (2017)
- Liu W, Chen XL, Yang J, Li Y, Zhou YF, Huang ZL, Yi ZZ, Adv. Mater. Res., 430, 917 (2012)
- Merabti R, Bachari K, Halliche D, Rassoul Z, Saadi A, React. Kinet. Mech. Catal., 101, 195 (2010)
- Pinna F, Menegazzo F, Signoretto M, Canton P, Fagherazzi G, Pernicone N, Appl. Catal. A: Gen., 219(1-2), 195 (2001)
- Kluson P, Cerveny L, J. Mol. Catal. A-Chem., 108, 107 (1996)
- Zayats M, Kharitonov AB, Pogorelova SP, Lioubashevski O, Katz E, Willner I, J. Am. Chem. Soc., 125(51), 16006 (2003)
- Guo YG, Hu JS, Liang HP, Wan LJ, Bai CL, Adv. Funct. Mater., 15(2), 196 (2005)
- Aulakh MK, Pal B, J. Taiwan Inst. Chem. Eng., 96, 559 (2019)
- Levchenko AA, Li G, Boerio-Goates J, Woodfield BF, Navrotsky A, Chem. Mater., 18, 6324 (2006)
- Yang L, Jiang X, Ruan W, Zhao B, Xu W, Lombardi JR, J. Phys. Chem. C, 112, 20095 (2008)
- Macwan DP, Dave PN, Chaturvedi S, J. Mater. Sci., 46(11), 3669 (2011)
- Wang Y, Zhang L, Deng K, Chen X, Zou Z, J. Phys. Chem. C, 111, 2709 (2007)
- Zhu HY, Gao XP, Lan Y, Song DY, Xi YX, Zhao JC, J. Am. Chem. Soc., 126(27), 8380 (2004)
- Kormann C, Bahnemann DW, Hoffmann MR, J. Phys. Chem., 92, 5196 (1988)
- Yanagida S, Ishimaru Y, Miyake Y, Shiragami T, Pac C, Hashimoto K, Sakata T, J. Phys. Chem., 93, 2576 (1989)
- Rossetti R, Hull R, Gibson J, Brus LE, J. Chem. Phys., 82, 552 (1985)
- Spanhel L, Haase M, Weller H, Henglein A, J. Am. Chem. Soc., 109, 5649 (1987)
- Nenadovic M, Rajh T, Micic O, J. Phys. Chem., 89, 397 (1985)
- Robel I, Kuno M, Kamat PV, J. Am. Chem. Soc., 129(14), 4136 (2007)
- Chae SY, Park MK, Lee SK, Kim TY, Kim SK, Lee WI, Chem. Mater., 15, 3326 (2003)
- Tauc J, Grigorovici R, Vancu A, Phys. Status Solidi (b) 15, 627 (1966).
- Singh R, Pal B, ChemPlusChem, 80, 851 (2015)
- Chen DH, Huang FZ, Cheng YB, Caruso RA, Adv. Mater., 21(21), 2206 (2009)
- Yang H, Tang D, Lu X, Yuan Y, J. Phys. Chem. C, 113, 8186 (2009)
- Abazovic ND, Mirenghi L, Jankovic IA, Bibic N, Sojic DV, Abramovic BF, Comor MI, Nanoscale Res. Lett., 4, 518 (2009)
- Li J, Xia JB, Phys. Rev. B, 62, 12613 (2000)