화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.80, 325-334, December, 2019
Tuning the band energetics of size dependent titania nanostructures for improved photo-reductive efficiency of aromatic aldehydes
E-mail:
Mono-dispersed and smaller sized TiO2 nanospheres (-8 nm and -20 nm) exhibited superior photo-reductive efficiency for few aromatic aldehydes under UV light. It has been found that p-nitrobenzaldehyde and benzaldehyde are efficiently reduced to p-aminobenzyl alcohol (80% and 61%) and benzyl alcohol (59% and 38%) by 8 nm and 20 nm particles respectively, relative to negligible reduction by TiO2 (P25) under same experimental conditions. However, the successful photo-reduction of p-nitrotoluene (97%) was observed with P25 whose reduction potential (?0.5 eV) lies below the conduction band (CB, -0.85 eV vs NHE) of the catalyst. These findings can be explained on the basis of unsuitable and mismatched CB of P25 with respect to the lowest unoccupied molecular orbital of -CHO group to access its photo-activity. However, this hydrogenation occurred by synthesized smaller sized TiO2 particles (-8 nm and -20 nm) due to their favorable band gap (3.85 eV and 3.62 eV) and conduction band edge (-0.61 eV and -0.50 eV). Moreover, the other physio-chemical characteristics of 8 nm and 20 nm sized particles such as surface area (323 m2 g-1 and 297 m2 g-1), higher charge carrier relaxation time (61 μs and 40 μs) are also co-related for ease of photo-activity relative to TiO2 (P25).
  1. Ismail AA, Hakki A, Bahnemann DW, J. Mol. Catal. A-Chem., 358, 145 (2012)
  2. Di Paola A, Marci G, Palmisano L, Schiavello M, Uosaki K, Ikeda S, Ohtani B, J. Phys. Chem. B, 106(3), 637 (2002)
  3. Shiraishi Y, Togawa Y, Tsukamoto D, Tanaka S, Hirai T, ACS Catal., 2, 2475 (2012)
  4. Kaur J, Pal B, Chem. Commun., 51, 8500 (2015)
  5. Rase HF, Handbook of commercial catalysts: heterogeneous catalysts CRC Press, 2016.
  6. Jayesh T, Itika K, Babu GR, Rao KR, Keri R, Jadhav AH, Nagaraja B, Catal. Commun., 106, 73 (2018)
  7. Han M, Zhang H, Du Y, Yang P, Deng Z, React. Kinet. Mech. Catal., 102, 393 (2010)
  8. Divakar D, Manikandan D, Kalidoss G, Sivakumar T, Catal. Lett., 125(3-4), 277 (2008)
  9. Yang ZH, Bai XG, Zhou L, Wang JX, Liu HT, Wang YC, Bioorg. Med. Chem. Lett., 25, 1880 (2015)
  10. Gallezot P, Richard D, Catal. Rev.-Sci. Eng., 40(1-2), 81 (1998)
  11. Claus P, Top. Catal., 5, 51 (1998)
  12. Bai X, Yang Z, Zhu M, Dong B, Zhou L, Zhang G, Wang J, Wang Y, Eur. J. Med. Chem., 137, 30 (2017)
  13. Wang YA, Deng YQ, Shi F, J. Mol. Catal. A-Chem., 395, 195 (2014)
  14. Prochazkova D, Zamostny P, Bejblova M, Cerveny L, Cejka J, Appl. Catal. A: Gen., 332(1), 56 (2007)
  15. Mokhov V, Popov YV, Nebykov D, Russ. J. Gen. Chem., 84, 1656 (2014)
  16. Ding Y, Li XH, Pan HY, Wu P, Catal. Lett., 144(2), 268 (2014)
  17. Mironenko RM, Belskaya OB, Gulyaeva TI, Trenikhin MV, Nizovskii AI, Kalinkin AV, Bukhtiyarov VI, Lavrenov AV, Likholobov VA, Catal. Today, 279, 2 (2017)
  18. Liu W, Chen XL, Yang J, Li Y, Zhou YF, Huang ZL, Yi ZZ, Adv. Mater. Res., 430, 917 (2012)
  19. Merabti R, Bachari K, Halliche D, Rassoul Z, Saadi A, React. Kinet. Mech. Catal., 101, 195 (2010)
  20. Pinna F, Menegazzo F, Signoretto M, Canton P, Fagherazzi G, Pernicone N, Appl. Catal. A: Gen., 219(1-2), 195 (2001)
  21. Kluson P, Cerveny L, J. Mol. Catal. A-Chem., 108, 107 (1996)
  22. Zayats M, Kharitonov AB, Pogorelova SP, Lioubashevski O, Katz E, Willner I, J. Am. Chem. Soc., 125(51), 16006 (2003)
  23. Guo YG, Hu JS, Liang HP, Wan LJ, Bai CL, Adv. Funct. Mater., 15(2), 196 (2005)
  24. Aulakh MK, Pal B, J. Taiwan Inst. Chem. Eng., 96, 559 (2019)
  25. Levchenko AA, Li G, Boerio-Goates J, Woodfield BF, Navrotsky A, Chem. Mater., 18, 6324 (2006)
  26. Yang L, Jiang X, Ruan W, Zhao B, Xu W, Lombardi JR, J. Phys. Chem. C, 112, 20095 (2008)
  27. Macwan DP, Dave PN, Chaturvedi S, J. Mater. Sci., 46(11), 3669 (2011)
  28. Wang Y, Zhang L, Deng K, Chen X, Zou Z, J. Phys. Chem. C, 111, 2709 (2007)
  29. Zhu HY, Gao XP, Lan Y, Song DY, Xi YX, Zhao JC, J. Am. Chem. Soc., 126(27), 8380 (2004)
  30. Kormann C, Bahnemann DW, Hoffmann MR, J. Phys. Chem., 92, 5196 (1988)
  31. Yanagida S, Ishimaru Y, Miyake Y, Shiragami T, Pac C, Hashimoto K, Sakata T, J. Phys. Chem., 93, 2576 (1989)
  32. Rossetti R, Hull R, Gibson J, Brus LE, J. Chem. Phys., 82, 552 (1985)
  33. Spanhel L, Haase M, Weller H, Henglein A, J. Am. Chem. Soc., 109, 5649 (1987)
  34. Nenadovic M, Rajh T, Micic O, J. Phys. Chem., 89, 397 (1985)
  35. Robel I, Kuno M, Kamat PV, J. Am. Chem. Soc., 129(14), 4136 (2007)
  36. Chae SY, Park MK, Lee SK, Kim TY, Kim SK, Lee WI, Chem. Mater., 15, 3326 (2003)
  37. Tauc J, Grigorovici R, Vancu A, Phys. Status Solidi (b) 15, 627 (1966).
  38. Singh R, Pal B, ChemPlusChem, 80, 851 (2015)
  39. Chen DH, Huang FZ, Cheng YB, Caruso RA, Adv. Mater., 21(21), 2206 (2009)
  40. Yang H, Tang D, Lu X, Yuan Y, J. Phys. Chem. C, 113, 8186 (2009)
  41. Abazovic ND, Mirenghi L, Jankovic IA, Bibic N, Sojic DV, Abramovic BF, Comor MI, Nanoscale Res. Lett., 4, 518 (2009)
  42. Li J, Xia JB, Phys. Rev. B, 62, 12613 (2000)