Polymer(Korea), Vol.43, No.6, 914-920, November, 2019
음이온중합과 Grafting-onto법에 의한 Poly(MMA-b-PEGMA)의 합성
Synthesis of Poly(MMA-b-PEGMA) by Anionic Polymerization and Grafting-onto Methodology
E-mail:
초록
본 연구에서는 고진공 음이온중합을 통해 분자량 및 조성이 조절된 poly(methyl methacrylate-b-tert-butyl methacrylate)를 합성하고 가수분해 및 grafting-onto 반응을 통해 가지형 고분자인 poly[methyl methacrylate-bpoly(ethylene glycol) methacrylate], poly(MMA-b-PEGMA)를 제조하였다. Grafting-onto 반응 결과 많은 입체적 장애가 발생하였으며, methacrylic acid(MA)의 함량이 많을수록 커플링 효율이 감소하였다. 그 결과, 가지형 고분자에는 반응에 참여한 PEGMA와 미반응 MA가 동시에 존재하게 되었다. 이들의 상대적인 양이 고분자물성에 영향을 주었으며 특히 MA가 적게 존재할수록 상대적으로 낮은 T g를 나타내었다. 또한 전기화학 측정결과, 양호한 이온전 도도는 낮은 유리전이온도를 가지는 고분자 전해질에서 발현되었다.
In this study, poly(methyl methacrylate-b-tert-butyl methacrylate) with controlled molecular weight and composition was synthesized by high vacuum anion polymerization and branched polymers, poly[methyl methacrylate-bpoly( ethylene glycol) methacrylate], poly(MMA-b-PEGMA) were synthesized by hydrolysis and grafting-onto reaction. Grafting-onto reactions had many steric hindrances and coupling efficiency decreased as the content of methacrylic acid (MA) increased. As a result, the branched polymer contained both PEGMA and unreacted MA. Their relative amounts affected the physical properties of the polymer and Tg was found to decrease as the amount of MA decreased. Also, the formation of a complex by the introduction of lithium salt resulted in a decrease in flexibility and an increase in the Tg. From the electrochemical investigation, good ionic conductivity was exhibited in polymer electrolyte having low Tg.
- Hadjichristidis N, Pispas S, Floudas G, Block Copolymers: Synthetic Strategies, Physical Properties, and Applications, Wiley Interscience, New Jersey, p 3 (2003).
- Ishizone T, Goseki R, “Living Anionic Addition Polymerization”, in Encyclopedia of Polymeric Nanomaterials, Springer, Berlin, p 9 (2014).
- Hirao A, Goseki R, Ishizone T, Macromolecules, 47(6), 1883 (2014)
- Hadjichristidis N, Hirao A, Editors, Anionic Polymerization: Principles, Practice, Strength, Consequences and Applications, Springer, New York, p 541 (2015).
- Hadjichristidis N, Iatrou H, Pispas S, Pitsikalis M, J. Polym. Sci. A: Polym. Chem., 38(18), 3211 (2000)
- Zhang HX, Li Y, Zhang CQ, Li ZS, Li X, Wang YR, Macromolecules, 42(14), 5073 (2009)
- Ryu SW, Hirao A, Macromolecules, 33(13), 4765 (2000)
- Schappacher M, Deffieux A, Macromol. Chem. Phys., 198, 3953 (1997)
- Gao HF, Matyjaszewski K, J. Am. Chem. Soc., 129(20), 6633 (2007)
- Higa M, Yaguchi K, Kitani R, Electrochim. Acta, 55(4), 1380 (2010)
- Pozyczka K, Marzantowicz M, Dygas JR, Krok F, Electrochim. Acta, 227, 127 (2017)
- Gomari S, Esfandeh M, Ghasemi I, Solid State Ion., 303, 37 (2017)
- Porcarelli L, Aboudzadeh MA, Rubatat L, Nair JR, Shaplov AS, Gerbaldi C, Mecerreyes D, J. Power Sources, 364, 191 (2017)
- Ryu SW, Trapa PE, Olugebefola SC, Gonzalez-Leon JA, Sadoway DR, Mayes AM, J. Electrochem. Soc., 152(1), A158 (2005)
- Ryu SW, Hirao A, Macromol. Chem. Phys., 202, 1727 (2001)
- Zhang YF, Chen YZ, Liu Y, Qin BS, Yang ZH, Sun YB, Zeng DL, Varzi A, Passerini S, Liu ZH, Cheng HS, J. Power Sources, 397, 79 (2018)
- Rohan R, Sun YB, Cai WW, Zhang YF, Pareek K, Xu GD, Cheng HS, Solid State Ion., 268, 294 (2014)