Polymer(Korea), Vol.43, No.6, 933-939, November, 2019
수중대향충돌 유래 화학개질 셀룰로오스 나노섬유 강화 수분산폴리우레탄 투명복합체
A Waterborne Polyurethane Transparent Composite Reinforced with Chemically-modified Cellulose Nanofibers Derived by Aqueous Counter Collision
E-mail:
초록
본 연구에서는 수분산폴리우레탄의 기계적 물성을 향상시키기 위해 셀룰로오스 나노섬유를 강화제로 사용한 투명복합체의 제작 및 그 물성에 대해 보고한다. Poly(tetrahydrofuran)과 isophorone diisocyanate, 2,2-bis(hydroxymethyl) propionic acid를 사용해 수분산폴리우레탄을 합성하여 기지(matrix)로 사용하였으며, 강화제로는 숙신산무수물 화학개질과 수중대향충돌(aqueous counter collision) 방식을 통해 제조된 셀룰로오스 나노섬유를 사용하였다. 제작된 수분산폴리우레탄 투명복합체의 구조 및 광투과도, 기계적 물성, 열적 특성을 분석하였다. 그 결과, 제작된 투명복합체는 수분산폴리우레탄과 셀룰로오스 나노섬유 사이의 수소결합에 의한 강화효과로 인해 90% 이상의 가시광투과도를 유지하면서도 항복강도와 Young’s modulus 등 기계적 물성이 향상됨을 확인하였다.
In this study, we report on the fabrication of transparent waterborne polyurethane (WPU) composites using cellulose nanofiber (CNF) as a reinforcing agent, of which mechanical properties are improved while maintaining optical clarity. Poly(tetrahydrofuran), isophorone diisocyanate, and 2,2-bis(hydroxymethyl)propionic acid were used as the chemical precursors for the WPU matrix. The chemically modified cellulose nanofibers (SA-CNF) were prepared both by chemical modification using succinic anhydride (SA) and aqueous counter collision (ACC) method. The structure of WPU/SA-CNF and its optical transmittance, mechanical properties, and thermal properties were analyzed to investigate the structure-property relationship. As a result, it was confirmed that both the yield strength and Young’s modulus of WPU/SA-CNF were improved with increasing the SA-CNF content while maintaining a high level of optical transmittance (>90 %), which is attributed to the hydrogen bond-mediated interaction between the WPU matrix and SA-CNF reinforcement.
Keywords:waterborne polyurethane;cellulose nanofiber;aqueous counter collision;succinic anhydride;composite
- Chen GN, Chen KN, J. Appl. Polym. Sci., 63(12), 1609 (1997)
- Chen GN, Chen KN, J. Appl. Polym. Sci., 71(6), 903 (1999)
- Kim BK, Seo JW, Jeong HM, Eur. Polym. J., 39, 85 (2003)
- Gao Z, Peng J, Zhong T, Sun J, Wang X, Yue C, Carbohydr. Polym., 87, 2068 (2012)
- Hsu SH, Tseng HJ, Lin YC, Biomaterials, 31, 6796 (2010)
- Choi SH, Kim DH, Raghu AV, Reddy KR, Lee HI, Yoon KS, Jeong HM, Kim BK, J. Macromol. Sci., Part B, 51, 197 (2012)
- Kuan HC, Ma CCM, Chang WP, Yuen SM, Wu HH, Lee TM, Compos. Sci. Technol., 65, 1703 (2005)
- Huang J, Zou JW, Chang PR, Yu JH, Dufresne A, Express Polym. Lett., 5, 362 (2011)
- Cao X, Habibi Y, Lucia LA, J. Mater. Chem., 19, 7137 (2009)
- Santamaria-Echart A, Ugarte L, Garcia-Astrain C, Arbelaiz A, Corcuera MA, Eceiza A, Carbohydr. Polym., 151, 1203 (2016)
- Cheng D, Wen Y, An X, Zhu X, Ni Y, Carbohydr. Polym., 151, 326 (2016)
- Benhamou K, Kaddami H, Magnin A, Dufresne A, Ahmad A, Carbohydr. Polym., 122, 202 (2015)
- Liu H, Song J, Shang S, Song Z, Wang D, ACS Appl. Mater. Interfaces, 4, 2413 (2012)
- Sehaqui H, Kulasinski K, Pfenninger N, Zimmermann T, Tingaut P, Biomacromolecules, 18, 242 (2016)
- Zhu H, Parvinian S, Preston C, Vaaland O, Ruan Z, Hu L, Nanoscale, 5, 3787 (2013)
- Sadeghi M, Semsarzadeh MA, Barikani M, Ghalei B, J. Membr. Sci., 385(1-2), 76 (2011)
- Cao XD, Dong H, Li CM, Biomacromolecules, 8(3), 899 (2007)
- Sun J, Sun X, Zhao H, Sun R, Polym. Degrad. Stabil., 84, 331 (2004)
- Badri KBH, Sien WC, Shahrom M, Hao LC, Baderuliksan NY, Norzali N, Solid State Sci. Technol., 18, 1 (2010)
- Park S, Baker JO, Himmel ME, Parilla PA, Johnson DK, Biotechnol. Biofuels, 3, 10 (2010)
- Yang YK, Kwak NS, Hwang TS, Polym. Korea, 29(1), 81 (2005)
- Lu MG, Lee JY, Shim MJ, Kim SW, J. Appl. Polym. Sci., 85(12), 2552 (2002)
- Huang P, Zhao Y, Kuga S, Wu M, Huang Y, Nanoscale, 8, 3753 (2016)
- Seydibeyoglu MO, Oksman K, Compos. Sci. Technol., 68, 908 (2008)
- Iwatake A, Nogi M, Yano H, Compos. Sci. Technol., 68, 2103 (2008)
- Lee MY, Kim SK, Polym. Korea, 43(2), 235 (2019)
- Wu GM, Liu GF, Chen J, Kong ZW, Prog. Org. Coat., 106, 170 (2017)