화학공학소재연구정보센터
Polymer(Korea), Vol.43, No.6, 933-939, November, 2019
수중대향충돌 유래 화학개질 셀룰로오스 나노섬유 강화 수분산폴리우레탄 투명복합체
A Waterborne Polyurethane Transparent Composite Reinforced with Chemically-modified Cellulose Nanofibers Derived by Aqueous Counter Collision
E-mail:
초록
본 연구에서는 수분산폴리우레탄의 기계적 물성을 향상시키기 위해 셀룰로오스 나노섬유를 강화제로 사용한 투명복합체의 제작 및 그 물성에 대해 보고한다. Poly(tetrahydrofuran)과 isophorone diisocyanate, 2,2-bis(hydroxymethyl) propionic acid를 사용해 수분산폴리우레탄을 합성하여 기지(matrix)로 사용하였으며, 강화제로는 숙신산무수물 화학개질과 수중대향충돌(aqueous counter collision) 방식을 통해 제조된 셀룰로오스 나노섬유를 사용하였다. 제작된 수분산폴리우레탄 투명복합체의 구조 및 광투과도, 기계적 물성, 열적 특성을 분석하였다. 그 결과, 제작된 투명복합체는 수분산폴리우레탄과 셀룰로오스 나노섬유 사이의 수소결합에 의한 강화효과로 인해 90% 이상의 가시광투과도를 유지하면서도 항복강도와 Young’s modulus 등 기계적 물성이 향상됨을 확인하였다.
In this study, we report on the fabrication of transparent waterborne polyurethane (WPU) composites using cellulose nanofiber (CNF) as a reinforcing agent, of which mechanical properties are improved while maintaining optical clarity. Poly(tetrahydrofuran), isophorone diisocyanate, and 2,2-bis(hydroxymethyl)propionic acid were used as the chemical precursors for the WPU matrix. The chemically modified cellulose nanofibers (SA-CNF) were prepared both by chemical modification using succinic anhydride (SA) and aqueous counter collision (ACC) method. The structure of WPU/SA-CNF and its optical transmittance, mechanical properties, and thermal properties were analyzed to investigate the structure-property relationship. As a result, it was confirmed that both the yield strength and Young’s modulus of WPU/SA-CNF were improved with increasing the SA-CNF content while maintaining a high level of optical transmittance (>90 %), which is attributed to the hydrogen bond-mediated interaction between the WPU matrix and SA-CNF reinforcement.
  1. Chen GN, Chen KN, J. Appl. Polym. Sci., 63(12), 1609 (1997)
  2. Chen GN, Chen KN, J. Appl. Polym. Sci., 71(6), 903 (1999)
  3. Kim BK, Seo JW, Jeong HM, Eur. Polym. J., 39, 85 (2003)
  4. Gao Z, Peng J, Zhong T, Sun J, Wang X, Yue C, Carbohydr. Polym., 87, 2068 (2012)
  5. Hsu SH, Tseng HJ, Lin YC, Biomaterials, 31, 6796 (2010)
  6. Choi SH, Kim DH, Raghu AV, Reddy KR, Lee HI, Yoon KS, Jeong HM, Kim BK, J. Macromol. Sci., Part B, 51, 197 (2012)
  7. Kuan HC, Ma CCM, Chang WP, Yuen SM, Wu HH, Lee TM, Compos. Sci. Technol., 65, 1703 (2005)
  8. Huang J, Zou JW, Chang PR, Yu JH, Dufresne A, Express Polym. Lett., 5, 362 (2011)
  9. Cao X, Habibi Y, Lucia LA, J. Mater. Chem., 19, 7137 (2009)
  10. Santamaria-Echart A, Ugarte L, Garcia-Astrain C, Arbelaiz A, Corcuera MA, Eceiza A, Carbohydr. Polym., 151, 1203 (2016)
  11. Cheng D, Wen Y, An X, Zhu X, Ni Y, Carbohydr. Polym., 151, 326 (2016)
  12. Benhamou K, Kaddami H, Magnin A, Dufresne A, Ahmad A, Carbohydr. Polym., 122, 202 (2015)
  13. Liu H, Song J, Shang S, Song Z, Wang D, ACS Appl. Mater. Interfaces, 4, 2413 (2012)
  14. Sehaqui H, Kulasinski K, Pfenninger N, Zimmermann T, Tingaut P, Biomacromolecules, 18, 242 (2016)
  15. Zhu H, Parvinian S, Preston C, Vaaland O, Ruan Z, Hu L, Nanoscale, 5, 3787 (2013)
  16. Sadeghi M, Semsarzadeh MA, Barikani M, Ghalei B, J. Membr. Sci., 385(1-2), 76 (2011)
  17. Cao XD, Dong H, Li CM, Biomacromolecules, 8(3), 899 (2007)
  18. Sun J, Sun X, Zhao H, Sun R, Polym. Degrad. Stabil., 84, 331 (2004)
  19. Badri KBH, Sien WC, Shahrom M, Hao LC, Baderuliksan NY, Norzali N, Solid State Sci. Technol., 18, 1 (2010)
  20. Park S, Baker JO, Himmel ME, Parilla PA, Johnson DK, Biotechnol. Biofuels, 3, 10 (2010)
  21. Yang YK, Kwak NS, Hwang TS, Polym. Korea, 29(1), 81 (2005)
  22. Lu MG, Lee JY, Shim MJ, Kim SW, J. Appl. Polym. Sci., 85(12), 2552 (2002)
  23. Huang P, Zhao Y, Kuga S, Wu M, Huang Y, Nanoscale, 8, 3753 (2016)
  24. Seydibeyoglu MO, Oksman K, Compos. Sci. Technol., 68, 908 (2008)
  25. Iwatake A, Nogi M, Yano H, Compos. Sci. Technol., 68, 2103 (2008)
  26. Lee MY, Kim SK, Polym. Korea, 43(2), 235 (2019)
  27. Wu GM, Liu GF, Chen J, Kong ZW, Prog. Org. Coat., 106, 170 (2017)