화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.81, 340-351, January, 2020
Pursuit of optimal synthetic conditions for obtaining colloidal zero-valent iron nanoparticles by scanning pulsed laser ablation in liquids
E-mail:,
Liquid-Assisted Pulsed Laser Ablation (LA-PLA) is a promising top-down method to directly synthesize colloidal dispersions of nanoparticles in a eco-friendly manner. However, the role of LA-PLA synthesis parameters is not yet fully agreed. This work seeks to optimize the production of nanoscale zero-valent iron (nZVI) particles suitable for biomedical or environmental applications using nanosecond LA-PLA on iron targets with different ablation media, laser and target scanning parameters. The use of alcohols as solvents produces iron-iron oxide core-shell nanoparticles with amorphous cores, except for a small crystalline fraction corresponding to the biggest core sizes. Decreasing carbon chain length and complexity leads to a thinning of the carbonaceous material coatings and an increase of the colloidal stability and the nanoparticle productivity. Moreover, a decrease of solvent density and surface tension allows obtaining reduced sizes and polydispersity values. Among, laser and scanning parameters, the pulse accumulation per spot displayed a clear effect in boosting size and productivity. As main outcome, aqueous dispersions with suitable colloidal properties are obtained, either by transferring to water of optimized nZVI particles produced in ethanol, or by direct formation of nZVI particles and in situ coating with hydrophilic molecules in aqueous solutions of these molecules.
  1. (a) Huber DL, Small 1 (5), 482 (2005); (b) Bomati-Miguel O, Morales MP, Tartaj P, Ruiz-Cabello J, Bonville P, Santos M, Veintemillas-Verdaguer S, Biomaterials 26 (28), 5695 (2005); (c) Cassim S, Giustini SA, Baker I, Hoopes P, Proc. SPIE 7901 (1-8), 70115 (2011).
  2. Lee C, Kim JY, Lee WI, Nelson KL, Yoon J, Sedlak DL, Environ. Sci. Technol., 42(13), 4927 (2008)
  3. Nurmi JT, Tratnyek PG, Sarathy V, Baer DR, Amonette JE, Pecher K, Driessen MD, Environ. Sci. Technol., 39, 1221 (2005)
  4. (a) Karn B, Kuiken T, Otto M, Health Perspect.117 (12), 1813 (2009); (b) Mueller NC, Braun J, Bruns J, Cernik M, Rissing P, Rickerby D, Nowack B, Environ. Sci. Pollut. Res. 19, 550 (2012); (c) Bruton TA, Pycke BF, Haden RU, Crit. Rev. Environ. Sci. Technol. 45 (11),1148 (2015).
  5. Vasudeo RA, Krishnan K, Sabu AVKT, Synthesis of Inorganic Nanomaterials, Woodhead Publishing, Elservier, UKA, pp.121 2018.
  6. Stefaniuk M, Oleszczuk P, Ok YS, Chem. Eng. J., 287, 618 (2016)
  7. Choi CJ, Tolochko O, Kim BK, Mater. Lett., 56(3), 289 (2002)
  8. Bomati-Miguel O, Morales MP, Serna C, Veintemillas-Verdaguer S, IEEE Trans. Magn., 38(5), 2216 (2002)
  9. Wang Z, Li X, Gao M, Zeng X, Powder Technol., 215-216, 147 (2012)
  10. Li S, Yan W, Zhang WX, Green Chem., 11, 1618 (2009)
  11. (a) Zeng H, Du XW, Singh SC, Kulinich SA, Yang S, He J, Cai W, Adv. Funct. Mater. 22, 1333 (2012); (b) Amendola V, Meneghetti M, Phys. Chem. Chem. Phys. 15, 3027 (2013).
  12. (a) Amendola V, et al., J. Phys. Chem. C 115 (12), 5140 (2011); (b) Kumar B, et al., J. Appl. Phys. 108 (1-6), 064906 (2010); (c) Nakamura T, et al., Appl. Phys. A 104, 1021 (2011); (d) Jiang Y, et al., Appl. Phys. A 105, 903 (2011); (e) Kim MR, et al., Appl. Catal. A Gen. 393, 317 (2011); (f) Simakin AV, et al., Chem. Phys. Lett. 348, 182 (2001); (g) Marzun G, et al., Appl. Surf. Sci. 348 (1), 75 (2015); (h) Semaltianos NG, et al.,J. Nanopart. Res.12, 573 (2010); (i) Zang J, et al., Mater. Lett. 62, 1521 (2008); (j) Wagener P, et al., J. Phys. Chem. C 114, 7618 (2010); (k) Lasemi N, et al., Appl. Surf. Sci. 433, 772 (2018); (l) Lasemi N, et al., ChemPhysChem 19, 1414 (2018).
  13. Sajti CL, Sattari R, Chichkov BN, Barcikowski S, J. Phys. Chem. C, 114, 2421 (2010)
  14. (a) Sukhov LA, et al., Quant. Electron. 42 (5), 453 (2012); (b) Iwamoto T, et al., Phys. Conf. Ser. 441 (1*-), 012034 (2013); (c) Omelchenko AI, et al., Laser Phys. Laser Phys. 25 (1-5), 025607 (2015).
  15. (a) Yang G, Prog. Mater. Sci. 52, 648 (2007); (b) Simakin A, et al., Phys. Wave Phenom. 14 (4), 218 (2007); (c) Taccogna F, et al., Plasma Sources Sci. Technol. 26 (4), 045002 (2017); (d) Dell’Aglio M, et al., Appl. Surf. Sci. 348 (1), 4 (2015); (e) D. Zhang,(e) Zhang D, et al., Chem. Rev. 117 (5), 3990 (2017).
  16. Shaheen ME, Gagnon JE, Fryer BJ, J. Appl. Phys., 113 (2013)
  17. O’Grady K, Bradbury A, J. Magn. Magn. Mater., 39, 91 (1983)
  18. International Centre for Diffraction Data, Powder Diffraction FileTM (PDF®)2018-2019, file JCPDS 89-0691, (2018). http://www.icdd.com.
  19. International Centre for Diffraction Data, Powder Diffraction FileTM (PDF®) 2018-2019, file. JCPDS 39-1346, (2018). http://www.icdd.com.
  20. International Centre for Diffraction Data, Powder Diffraction FileTM (PDF®) 2018-2019, file. JCPDS 04-014-0360, (2018). http://www.icdd.com.
  21. (a) Hanesch M, Geophys. J. Int. 177, 941 (2009); (b) Jubb AM, et al., Appl. Mater. Interfaces 2 (10), 2804 (2010).
  22. (a) Reich S, et al., Philos. Trans. R. Soc. Lond. A 362, 2271 (2004); (b) Tarasenka N, et al., ChemPhysChem 18 (9), 1074 (2017).
  23. Yu Y, Lin K, Xiaoguo Z, Hua W, Shilin L, Xingxiao M, J. Phys. Chem. C, 111, 8971 (2007)
  24. Park E, Zhang J, Thomson S, Ostrovski O, Howe R, Metall. Mater. Trans. B-Proc. Metall. Mater. Proc. Sci., 32(5), 840 (2001)
  25. Marton M, Vojs M, Zdravecka E, Himmerlich M, Haensel T, Krischok S, Redhammer R, J. Spectrosc., 467079, 1 (2013)
  26. Bomati-Miguel O, Tartaj P, Morales MP, Bonville P, Golla-Schindler U, Zhao XQ, Veintemillas-Verdaguer S, Small, 2(12), 1476 (2006)
  27. Colliex C, Manoubi T, Ortiz C, Phys. Rev. B, 44(20), 11402 (1991)
  28. Golla-Schindler U, Hinrichs R, Bomati-Miguel O, Putnis A, Micron, 37, 473 (2006)
  29. McIntyre N, Zetaruk D, Anal. Chem., 49(11), 1521 (1977)
  30. Moussa S, Atkinson G, El-Shall M, J. Nanopart. Res., 15(1-10), 1470 (2013)
  31. Parks GA, Chem. Rev., 65(2), 177 (1965)
  32. Sun YP, Li XQ, Cao J, Wei-Xian Z, Wang H, Adv. Colloid Interface Sci., 120, 47 (2006)
  33. Kosmulski M, J. Colloid Interface Sci., 337(2), 439 (2009)
  34. Lichty P, Kreider P, Kilbury O, King D, Alan WW, Wirz M, Dinair D, Int. J. Appl. Ceram. Technol., 10(2), 257 (2013)
  35. Cullity BD, Addison-Wesley Pub. Co. USA, 1972.
  36. Millan A, Urtizberea A, Silva N, Palacio F, Amaral V, Snoeck E, Serin V, J. Magn. Magn. Mater., 312, 1 (2007)
  37. Mark WG, Myron BS, Kenneth SS, Phys. Rev. B, 48, 269 (1993)
  38. Nemati Z, Alonso J, Khurshid H, Phana M, Srikanth H, RSC Adv., 6, 38697 (2016)
  39. Kanitz A, Hoppius JS, Sanz MM, Maicas M, Ostendorf A, Gurev EL, ChemphysChem, 18(9), 115 (2017)
  40. Krishnan KM, IEEE Trans. Magn., 46(7), 2523 (2010)
  41. International Centre for Diffraction Data, Powder Diffraction FileTM (PDF®) 2018-2019, file. JCPDS 00-035-0772, (2018). http://www.icdd.com.
  42. NIST Chemistry WebBook, Standard Reference Data: https://www.nist.gov/srd.