Journal of Industrial and Engineering Chemistry, Vol.81, 375-384, January, 2020
Pd nanoparticles on a dual acid-functionalized porous polymer for direct synthesis of H2O2: Contribution by enhanced H2 storage capacity
E-mail:,
Direct synthesis of H2O2 from H2 and O2 can avoid the energy and environmental problems of current multi-step anthraquinone oxidation process by enabling high atom utilization and generating only a water by-product. However, the direct process suffers a low H2O2 yield, and it is challenging to suppress the unfavorable side-reactions in the absence of corrosive additives under the restriction of explosion limits. In this study, an efficient new catalyst was prepared by immobilizing Pd nanoparticles (NPs) on an acidic hyper-crosslinked porous polymer (HCPP). The Pd catalyst supported on HCPP functionalized with both carboxylic and sulfonic acids (Pd/c-s-HCPP) achieved as high as 3130 mmol H2O2/g Pd.h with 82% selectivity to H2O2, which corresponded to one of the best catalysts reported so far. Pd/c-s-HCPP showed superior catalytic performance when compared with ones by Pd NPs supported on unfunctionalized HCPP (Pd/HCPP), or sulfonated resin (Pd/SO3H-resin). Extensive characterizations and H2 adsorption measurements indicated that the c-s-HCPP provided (i) selective adsorption sites for Pd precursors, (ii) acted as an efficient H2 reservoir in the proximity of the small Pd NPs formed, and (iii) imparts solid acidity to enhance H2O2 selectivity, which offered a new direction in the catalyst design for the direct synthesis of H2O2.
Keywords:Direct synthesis of H2O2;Hyper-crosslinked porous polymer;Hydrogen storage;Oxygen storage;Solid acid support
- Goor SJG, Glenneberg J, Ullmann’s Encycl. Ind. Chem., 393 (2007).
- Ranganathan VSS, Catalysts, 8, 379 (2018)
- Hancu D, Beckman EJ, Green Chem., 3, 80 (2001)
- Campos-Martin JM, Blanco-Brieva G, Fierro JLG, Angew. Chem.-Int. Edit., 45, 6962 (2006)
- Samanta C, Appl. Catal. A: Gen., 350(2), 133 (2008)
- Lewis RJ, Hutchings GJ, ChemCatChem, 11, 298 (2019)
- Menegazzo F, Signoretto M, Ghedini E, Strukul G, Menegazzo F, Signoretto M, Ghedini E, Strukul G, Catalysts, 9, 251 (2019)
- Burch R, Ellis PR, Appl. Catal. B: Environ., 42(2), 203 (2003)
- Samanta C, Choudhary VR, Appl. Catal. A: Gen., 330, 23 (2007)
- Gallina G, Garcia-Serna J, Salmi TO, Canu P, Biasi P, Ind. Eng. Chem. Res., 56, 13367 (2017)
- Henkel H, Weber W, Manufacture of Hydrogen Peroxide US1108752, (1914).
- Wilson NM, Bregante DT, Priyadarshini P, Flaherty DW, Catalysis, 29, 122 (2017)
- Flaherty DW, ACS Catal., 8, 1520 (2018)
- Tian PF, Ding DD, Sun Y, Xuan FZ, Xu XY, Xu J, Han YF, J. Catal., 369, 95 (2019)
- Wilson NM, Flaherty DW, J. Am. Chem. Soc., 138(2), 574 (2016)
- Zhou B, Lee LK, Catalyst and Process for Direct Catalystic Production of Hydrogen Peroxide (H2O2) US6168775B1, (2001).
- Edwards JK, Freakley SJ, Carley AF, Kiely CJ, Hutchings GJ, Accounts Chem. Res., 47, 845 (2014)
- Ouyang L, Tian PF, Da GJ, Xu XC, Ao C, Chen TY, Si R, Xu J, Han YF, J. Catal., 321, 70 (2015)
- Freakley SJ, He Q, Harrhy JH, Lu L, Crole DA, Morgan DJ, Ntainjua EN, Edwards JK, Carley AF, Borisevich AY, Kiely CJ, Hutchings GJ, Science, 351(6276), 965 (2016)
- Jeong HE, Kim S, Seo MG, Lee DW, Lee KY, J. Mol. Catal. A-Chem., 420, 88 (2016)
- Tian PF, Ouyang L, Xu XY, Ao C, Xu XC, Si R, Shen XJ, Lin M, Xu J, Han YF, J. Catal., 349, 30 (2017)
- Lee S, Jeong H, Chung YM, J. Catal., 365, 125 (2018)
- Kim JS, Kim HK, Kim SH, Kim I, Yu T, Han GH, Lee KY, Lee JC, Ahn JP, ACS Nano, 13, 4761 (2019)
- Wang F, Xia CG, de Visser SP, Wang Y, J. Am. Chem. Soc., 141(2), 901 (2019)
- Edwards JK, Solsona BE, Landon P, Carley AF, Herzing A, Kiely CJ, Hutchings GJ, J. Catal., 236(1), 69 (2005)
- Edwards JK, Thomas A, Carley AF, Herzing AA, Kiely CJ, Hutchings GJ, Green Chem., 10, 388 (2008)
- Edwards JK, Edwin NN, Carley AF, Herzing AA, Kiely CJ, Hutchings GJ, Angew. Chem.-Int. Edit., 48, 8512 (2009)
- Ghedini E, Menegazzo F, Signoretto M, Manzoli M, Pinna F, Strukul G, J. Catal., 273(2), 266 (2010)
- Abate S, Lanzafame P, Perathoner S, Centi G, Catal. Today, 169(1), 167 (2011)
- Seo M, Lee DW, Han SS, Lee KY, ACS Catal., 7, 3039 (2017)
- Yook S, Kwon HC, Kim YG, Choi W, Choi M, ACS Sustain. Chem. Eng., 5, 1208 (2017)
- Lee N, Chung YM, Res. Chem. Intermed., 42, 95 (2016)
- Gervasini A, Carniti P, Desmedt F, Miquel P, ACS Catal., 7, 4741 (2017)
- Sierra-Salazar AF, Li WSJ, Bathfield M, Ayral A, Abate S, Chave T, Nikitenko SI, Hulea V, Perathoner S, Lacroix-Desmazes P, Catal. Today, 306, 16 (2018)
- Han GH, Seo MG, Cho YH, Han SS, Lee KY, Mol. Catal., 429, 43 (2017)
- Edwards JK, Solsona B, Ntainjua E, Carley NAF, Herzing AA, Kiely CJ, Hutchings GJ, Science, 323, 1037 (2009)
- Hu BZ, Deng WP, Li RS, Zhang QH, Wang Y, Delplanque-Janssens F, Paul D, Desmedt F, Miquel P, J. Catal., 319, 15 (2014)
- Ntainjua EN, Piccinini M, Freakley SJ, Pritchard JC, Edwards JK, Carley AF, Hutchings GJ, Green Chem., 14, 170 (2012)
- Park S, Choi JH, Kim TJ, Chung YM, Oh SH, Song IK, J. Mol. Catal. A-Chem., 353-354, 37 (2012)
- Lee JW, Kim JK, Kang TH, Lee EJ, Song IK, Catal. Today, 293-294, 49 (2017)
- Blanco-Brieva G, Cano-Serrano E, Campos-Martin JM, Fierro JLG, Chem. Commun., 1184 (2004).
- Chung YM, Kwon YT, Kim TJ, Oh SH, Lee CS, Chem. Commun., 47, 5705 (2011)
- Kim J, Chung YM, Kang SM, Choi CH, Kim BY, Kwon YT, Kim TJ, Oh SH, Lee CS, ACS Catal., 2, 1042 (2012)
- Park S, Lee J, Song JH, Kim TJ, Chung YM, Oh SH, Song IK, J. Mol. Catal. A-Chem., 363-364, 230 (2012)
- Chung YM, Lee YR, Ahn WS, Bull. Korean Chem. Soc., 36, 1378 (2015)
- Liu G, Wang Y, Shen C, Ju Z, Yuan D, J. Mater. Chem. A, 3, 3051 (2015)
- Lee S, Chung YM, Mater. Lett., 234, 58 (2019)
- Modak A, Mondal J, Bhaumik A, ChemCatChem, 5, 1749 (2013)
- Kundu SK, Bhaumik A, ACS Sustain. Chem. Eng., 3, 1715 (2015)
- Li HL, Pang SP, Wu S, Feng XL, Mullen K, Bubeck C, J. Am. Chem. Soc., 133(24), 9423 (2011)
- Wu S, Wen G, Schlogl R, Su DS, Phys. Chem. Chem. Phys., 17, 1567 (2015)
- Geng HZ, Kim KK, Song C, Xuyen NT, Kim SM, Park KA, Lee DS, An KH, Lee YS, Chang Y, Lee YJ, Choi JY, Benayad A, Lee YH, J. Mater. Chem., 18, 1261 (2008)
- Lashkor M, Rawson FJ, Preece JA, Mendes PM, Analyst, 139, 5400 (2014)
- Xi J, Xiao J, Xiao F, Jin Y, Dong Y, Jing F, Wang S, Sci. Rep., 6, 1 (2016)
- Hajipour AR, Azizi G, RSC Adv., 4, 20704 (2014)
- Gemo N, Sterchele S, Biasi P, Centomo P, Canu P, Zecca M, Shchukarev A, Kordas K, Salmi TO, Mikkola JP, Catal. Sci. Technol., 5, 3545 (2015)
- Lari GM, Puertolas B, Shahrokhi M, Lopez N, Perez-Ramirez J, Angew. Chem.-Int. Edit., 56, 1775 (2017)
- Villa A, Freakley SJ, Schiavoni M, Edwards JK, Hammond C, Veith GM, Wang W, Wang D, Prati L, Dimitratos N, Hutchings GJ, Catal. Sci. Technol., 6, 694 (2016)
- Giorgianni G, Abate S, Centi G, Perathoner S, ChemCatChem, 11, 550 (2019)
- Huerta I, Garcia-Serna J, Cocero MJ, J. Supercrit. Fluids, 74, 80 (2013)
- Chang Z, Zhang DS, Chen Q, Bu XH, Phys. Chem. Chem. Phys., 15, 5430 (2013)
- Li GQ, Kobayashi H, Taylor JM, Ikeda R, Kubota Y, Kato K, Takata M, Yamamoto T, Toh S, Matsumura S, Kitagawa H, Nat. Mater., 13(8), 802 (2014)
- Konda SK, Chen A, Mater. Today, 19, 100 (2016)