Korean Chemical Engineering Research, Vol.57, No.6, 853-860, December, 2019
순환유동층 보일러 로내 탈황을 위한 석회석 평가
Evaluation of Limestone for In-Situ Desulfurization in CFB Boilers
E-mail:
초록
나날이 엄격해지는 환경 규제를 만족시키기 위하여, 고체 입자를 유체처럼 이용하는 순산소 순환유동층 및 초초임계 순환유동층 발전 기술이 전세계에서 개발되고 있다. 순환유동층 발전 공정들에서 미세먼지, 산성비의 주범으로 알려진 황산화물을 저감하는 전통적인 방법은 황산화물과 반응하는 석회석을 보일러 내에 직접 주입하는 것이다. 그러나 보일러 내에 주입된 석회석은 다양한 조업 변수들(온도, 압력, 고체 순환속도, 층밀도, 체류시간 등)의 영향을 받아 탈황 성능이 지속적으로 변화하게 된다. 이에 본 연구에서는 기존에 발표된 탈황 반응 속도식과 순환유동층의 수력학적 특성식들을 결합하여 순환유동층 보일러에서 석회석과 순환유동층 운전 특성들만으로 탈황 효율을 예측하는 식을 개발하였다. 특히 다양한 국내 석회석들의 탈황 반응들로부터 얻어진 실험 결과들을 이용하여 탈황 효율 예측식을 개선하였다.
In order to meet more severe environmental regulations, oxy-fuel circulating fluidized bed(CFB) boilers or ultra supercritical CFB boilers, which are a kind of process in that solid particles moves similar to fluid, have been developed in the world. In CFB power generation processes, the method to reduce or remove sulfur dioxide is in-situ desulfurization reaction via limestone directly injected into CFB boilers. However, the desulfurization efficiencies have continuously changed because limestones injected into CFB boilers are affected by various operation conditions (Bed temperature, pressure, solid circulating rate, solid holdup, residence time, and so on). In this study, a prediction method with physical and chemical properties of limestone and operation conditions of CFB boiler for in-situ desulfurization reaction in CFB boilers has developed by integrating desulfurization kinetic equations and hydrodynamics equations for CFB previously published. In particular, the prediction equation for in-situ desulfurization was modified by using experimental results from desulfurization reactions of various domestic limestones.
- Lee SH, Lee TH, Jeong SM, Lee JM, Renew. Energy, 138, 121 (2019)
- Gwak YR, Kim YB, Gwak IS, Lee SH, Fuel, 213, 115 (2018)
- Shin JH, Lee LS, Lee SH, Korean Chem. Eng. Res., 54(4), 501 (2016)
- Lee DY, Ryu HJ, Shun DW, Bae DH, Baek JI, Korean J. Chem. Eng., 35(6), 1257 (2018)
- Kook JW, Gwak IS, Gwak YR, Seo MW, Lee SH, Korean J. Chem. Eng., 34(12), 3092 (2017)
- Kim YB, Gwak YR, Keel SI, Yun JH, Lee SH, Chem. Eng. J., http://doi.org/10.1016/j.cej.2018.08.036.
- Lee JR, Hasolli N, Jeon SM, Lee KS, Kim KD, Kim YH, Lee KY, Park YO, Korean J. Chem. Eng., 35(11), 2321 (2018)
- Lee JW, Chung SW, Ryu SO, Lee JE, Yun Y, Lee C, Kim Y, Lim S, Korean J. Chem. Eng., 34(1), 54 (2017)
- Salehi-Asl M, Azhgan S, Movahedirad S, Korean J. Chem. Eng., 35(2), 613 (2018)
- Basu P, “Circulating Fluidized Bed Boilers,” Springer, Switzerland(2015).
- Park JM, Keel S, Yun JH, Yun JH, Lee SS, Korean J. Chem. Eng., 34(8), 2204 (2017)
- Won YS, Jeong AR, Choi JH, Jo SH, Ryu HJ, Yi CK, Korean J. Chem. Eng., 34(3), 913 (2017)
- Shun DW, Shin JS, Bae DH, Ryu HJ, Park JH, Korean J. Chem. Eng., 34(12), 3125 (2017)
- Jeong S, Lee KS, Keel SI, Yun JH, Kim YJ, Kim SS, Fuel, 161, 1 (2015)
- Abanades JC, Anthony EJ, Garcia-Labiano F, Jia LF, Ind. Eng. Chem. Res., 42(9), 1840 (2003)
- Wang H, Guo S, Yang L, Wei X, Zhang S, Wu S, Fuel Process. Technol., 155, 134 (2017)
- Shin JH, Kim YR, Kook JW, Kwak IS, Park KI, Lee JM, Lee SH, Appl. Chem. Eng., 26(5), 557 (2015)
- Wang LY, Li SY, Eddings EG, Ind. Eng. Chem. Res., 54(14), 3548 (2015)
- Kochel A, Cieplinska A, Szyrnanek A, Energy Fuels, 29(1), 331 (2015)
- Wang CB, Chen L, Jia LF, Tan YW, Appl. Energy, 155, 478 (2015)
- Seo JH, Baek CS, Kwon WT, Cho KH, Ahn JW, J. Korean Inst. Resour. Recycl., 24(6), 38 (2015)
- Lee DH, Hodges JL, Georgakis C, Chem. Eng. Sci., 35, 302 (1980)
- Fee DC, Wilson WI, Myles KM, Johnson I, Fan LS, Chem. Eng. Sci., 38, 1917 (1983)
- Hamer CA, Energy Mines and Resources, CANMET Report 86-9E, Canada(1986).
- Bolton LW, Davidson JF, Circulating fluidized bed technology II (pp. 139-146), Oxford: Pergarmon Press (1988).
- Naruse I, Kim H, Lu G, Yuan J, Ohtake K, Symposium (International). on. Combustion., 27, 2973-2979(1998).
- Al-Makhadmeh LA, Maier J, Batiha MA, Scheffknecht G, Fuel, 190, 229 (2017)
- Li W, Li S, Xu M, Wang X, J. Energy. Inst., 3, 1 (2017)