화학공학소재연구정보센터
Advanced Powder Technology, Vol.30, No.11, 2742-2750, 2019
NiAl-B composites with nanocrystalline intermetallic matrix produced by mechanical alloying and consolidation
Powder mixtures with equiatomic Ni-Al stoichiometry and with the addition of 5, 10, 20 and 30 vol% of boron were mechanically alloyed in a high-energy SPEX mill. Differential scanning calorimetry (DSC) was used for examination of the thermal behaviour of the milled powders. The mechanically alloyed powders and powders after DSC examinations were investigated by X-ray diffraction (XRD). For all the powder mixtures, a nanocrystalline NiAl intermetallic phase was formed during milling. With the increase of boron concentration in the mixtures, more intense refinement of the NiAl grain size during mechanical alloying was observed. Scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) examinations showed that the produced powders have composite structure, with boron particles uniformly distributed in the nanocrystalline NiAl intermetallic matrix. The density of the composite powders decreases with the increase of boron content, following the rule of mixture. The produced powders were subjected to consolidation by hot-pressing at 800 degrees C under the pressure of 7.7 GPa for 180 s. The produced bulk materials were investigated by XRD, SEM and EDS as well as characterised by hardness, density and open porosity measurements. It was found that during applied consolidation process the nanocrystalline structure of the NiAl matrix was maintained. The average hardness of the bulk composite samples is in the range of 10.58-12.6 GPa, depending on boron content, increases with the increase of boron content, and is higher than that of the NiAl intermetallic reference sample (9.53 GPa). The density of the bulk composite samples is the same as that of the corresponding powders after milling, decreases with the increase of boron content and is lower than that of the NiAl reference sample. To the best of our knowledge, the NiAl-B composites with nanocrystalline intermetallic matrix have been produced for the first time. (C) 2019 The Society of Powder Technology Japan. Published by Elsevier B.V. and The Society of Powder Technology Japan. All rights reserved.