Inorganic Chemistry, Vol.58, No.18, 12025-12039, 2019
Effect of Stacking Interactions on the Translation of Structurally Related Bis(thiosemicarbazonato)nickel(II) HER Catalysts to Modified Electrode Surfaces
A series of crystalline nickel(II) complexes (1-3) based on inexpensive bis(thiosemicarbazone) ligands diacetylbis (4-methyl-3-thiosemicarbazone) (H(2)ATSM), diacetylbis(4,4-dimethyl-3-thiosemicarbazone) (H(2)ATSDM), and diacetylbis[4-(2,2,2-trifluoroethyl)-3-thiosemicarbazone] (H(2)ATSM-F-6) wqre synthesized and characterized by single crystal X-ray diffraction and NMR, UV-visible, and Fourier transform infrared spectroscopies. Modified electrodes GC-1-GC-3 were prepared with films of 1-3 deposited on glassy carbon and evaluated as potential hydrogen evolution reaction (HER) catalysts. HER studies in 0.5 M aqueous H2SO4 (10 mA cm(-2)) revealed dramatic shifts in the overpotential from 0.740 to 0.450 V after extended cycling for 1 and 2. The charge-transfer resistances for GC-1-GC-3 were determined to be 270, 160, and 630 Omega, respectively. Characterization of the modified surfaces for GC-1 and GC-2 by scanning electron microscopy and Raman spectroscopy revealed similar crystalline coatings before HER that changed to surface-modified crystallites after conditioning. The surface of GC-3 had an initial glasslike appearance before HER that delaminated after HER The differences in the surface morphology and the effect of conditioning are correlated with crystal-packing effects. Complexes 1 and 2 pack as columns of interacting complexes in the crystallographic a direction with short interplanar spacings between 3.37 and 3.54 angstrom. Complex 3 packs as columns of isolated molecules in the crystallographic b direction with long-range interplanar spacings of 9.40 angstrom.