Inorganic Chemistry, Vol.58, No.16, 11020-11027, 2019
Facile Exfoliation of 3D Pillared Metal-Organic Frameworks (MOFs) to Produce MOF Nanosheets with Functionalized Surfaces
The production of two-dimensional (2D) ultrathin metal organic framework (MOF) nanosheets with functionalized surfaces is significant for extending their applications. To date, no protocol has been developed yet to solve this problem. Herein, we report a facile, mild, and efficient method to produce 2D monolayer MOF nanosheets with hydrophobic surfaces from layer-pillared 3D MOFs. This approach is based on the replacement of weaker coordinating pillar ligands with stronger coordinating capping ligands with the assistance of a high concentration gradient of the latter. Utilizing this method, the replacement of the 4,4'-bipyridine (bpy) pillars in two cadmium-based layer-pillared MOFs with alkylpyridine derivatives has been achieved, producing 2D MOF nanosheets with monolayer thickness and double-sided hydrophobic surfaces. The resulting hydrophobic 2D MOF nanosheets exhibit good performance for the separation of oil and water.