화학공학소재연구정보센터
International Journal of Hydrogen Energy, Vol.44, No.47, 25457-25472, 2019
Optimization of fuzzy-based MPPT controller via metaheuristic techniques for stand-alone PV systems
Due to the alteration of power-voltage characteristics of solar module output under multiple environmental conditions such as solar irradiation and ambient temperature, these systems hardly function at maximum power point (MPP). However, maximum power point tracking (MPPT) plays a significant role in their efficiency. On the other hand, solar module characteristics are extremely nonlinear and their slope on either side of MPP is asymmetric. Thus using a nonlinear control method which has the potential of adapting the operating point of the system to MPP seems useful. This has motivated authors to present MPPT method which maximizes PV's output power by tracking MPP continuously. In the present study, a fuzzy logic controller (FLC) is presented for MPPT in photovoltaic systems. Four optimization algorithms are presented in this paper for optimizing fuzzy membership functions (MFs) and generating proper duty cycle for MPPT. The presented algorithms include: Teaching Learning Based Optimization (TLBO), Firefly Algorithm (FFA), Biogeography based optimization (BBO), and Particle Swarm Optimization (PSO), which are all described and simulated. Finally, to validate performance of the proposed optimized FLC, it is compared with other algorithms such as symmetrical fuzzy logic controller (SFLC) and conventional Perturbation and Observation (P&O). According to the simulation results, P&O algorithm shows significant oscillations, energy loss, and in some cases, it cannot obtain MPP. Simulation results also indicate that TLBO and FFA based asymmetric fuzzy MFs not only increase MPPT convergence speed but also enhance tracking accuracy in comparison with symmetric fuzzy MFs and asymmetric fuzzy MFs based on BBO and PSO. (C) 2019 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.