Journal of Colloid and Interface Science, Vol.557, 395-407, 2019
Ultraviolet-driven switchable superliquiphobic/superliquiphilic coating for separation of oil-water mixtures and emulsions and water purification
Materials with switchable wettability by external stimuli are of interest in on-demand oil-water separation. Among these materials, ultraviolet (UV) light-stimuli TiO2-based materials are considered as predominant candidates due to the photoinduced superliquiphilicity of TiO2. Besides the photoinduced superliquiphilic property, the photocatalysis is another important intrinsic property of TiO2 which has applications in liquid purification. Therefore, TiO2-based material with these two properties can achieve both separation of diverse oil-water mixtures and liquid purification. In this study, a substrate-independent, UV-driven switchable superliquiphobic/superliquiphilic coating was developed by a facile one-pot method. The wettability of the coating can be rapidly switched between superhydrophobicity/superoleophilicity and superhydrophilicity/underwater superoleophobicity by UV irradiation and heating process, which can be used for on-demand separation of both immiscible oil-water mixtures and emulsions. Such a coating can also be used for the degradation of soluble contamination in water during UV irradiation due to the photocatalysis property of TiO2. The coating provides an effective solution for both on-demand oil-water separation and water purification, which is of interest in both industrial and domestic applications. (C) 2019 Published by Elsevier Inc.
Keywords:Superhydrophobic;Superoleophobic;UV-response;Oil-water separation;Emulsions;Water purification