Journal of Colloid and Interface Science, Vol.553, 758-767, 2019
Carbon dots decorated three-dimensionally ordered macroporous bismuth-doped titanium dioxide with efficient charge separation for high performance photocatalysis
Fast recombination of photo-generated carriers and limited photo-response have greatly hindered the development of TiO2-based photocatalysts. Herein, we present a ternary three-dimensionally ordered macroporous (3DOM) carbon dots (CDs)/Bi:TiO2 photocatalyst, which affords well-designed charge transmission and allows broad-spectrum absorption, thus delivering enhanced photocatalytic performance. The carbon dots act as effective electron extractors to accelerate the separation of electron-hole pairs, and pore engineering of the 3DOM Bi:TiO2 skeleton greatly promotes the response of light in the whole solar spectrum range. Impressively, the 3DOM CDs/Bi:TiO2 catalyst exhibits a greatly enhanced photocatalytic degradation performance toward phenol (92.7% in 2 h), and RhB (96.4% in 40 min) under full-spectra illumination, compared to the pristine 3DOM TiO2. This work provides a new design strategy for the optimization of carriers transmission pathway in high-quality and low-cost photocatalysts. (C) 2019 Elsevier Inc. All rights reserved.