Journal of Colloid and Interface Science, Vol.553, 845-863, 2019
The unusual fluid dynamics of particle electrophoresis
The classical problem of the electrophoretic motion of a spherical particle has been treated theoretically by Overbeek in his 1941 PhD thesis and almost 40 years later by O'Brien & White. Although both approaches used identical assumptions, the details are quite different. Overbeek solved for the pressure, velocity fields as well as the electrostatic potential, whereas O'Brien & White obtained the electrophoretic mobility without the need to consider the pressure and velocity explicitly. In this paper, we establish the equivalence of these two approaches that allow us to show that the tangential component of the fluid velocity has a maximum near the surface of the particle and outside the double layer, the velocity decays as 1/r(3), where r is the distance from the sphere, instead of 1/r in normal Stokes flow, Associated with this behavior is that of an irrotational outer flow field. This is consistent with the fact that a sphere moving with a constant electrophoretic velocity experiences zero net force. A study of the forces on the particle also provides a physical explanation of the independence of the electrophoretic mobility on the electrostatic boundary conditions or dielectric permittivity of the particle. These results are important in situations where inter-particle interaction is considered, for instance, in electrokinetic deposition. (C) 2019 Elsevier Inc. All rights reserved.
Keywords:Colloid;Double layer;Constant pressure irrotational Stokes flow;Short range interaction for multiple particles;Electrophoresis;Electrophoretic mobility