Applied Chemistry for Engineering, Vol.30, No.6, 737-741, December, 2019
스크린 프린팅 기반 저가형의 플렉서블 칼륨 이온 센서 제조 및 이의 전기화학적 특성
Fabrication of Low-cost and Flexible Potassium Ion Sensors based on Screen Printing and Their Electrochemical Characteristics
E-mail:
초록
본 연구에서는 스크린 프린팅 공정을 이용하여 저렴하고 유연한 칼륨 이온(K+) 센서를 제작하였다. 전도성 잉크의 균일한 코팅은 주사 전자 현미경 및 광학 현미경 측정에 의해 입증되었다. K+ 센서는 높은 감도, 빠른 응답 시간, 낮은 검출 한계를 보여주었다. 제조된 K+ 센서의 감도는 기계적으로 구부러진 상태에도 여전히 유지되었다. 히스테리시스 효과가 없는 우수한 반복성과 우수한 장기 안정성이 K+ 센서의 전기화학적 특성 분석에서 관찰되었다. 또한, K+ 센서는 다른 간섭 양이온이 존재하는 경우에도 정확하게 K+ 농도를 측정 할 수 있어 우수한 선택성을 증명하였다. 또한, 실제스포츠 음료 샘플에서 K+ 농도의 성공적인 측정은 K+ 센서의 K+ 농도 값과 상용 K+ 미터를 비교하여 증명되었다.
A low-cost and flexible potassium ion (K+) sensor was fabricated through a screen-printed process. Uniform and conformal coating of conductive inks was verified by scanning electron microscopy and optical microscopy measurements. The K+-sensors showed a high sensitivity, fast response time, and low detection limit. The sensitivity of K+-sensor was similar to that of both mechanically normal and bent states. The K+-sensor exhibited a good reproducibility with no hysteresis effect and excellent long term stability. In addition, the K+-sensor showed an excellent selectivity for K+ concentrations in the presence of other interfering cation ions. Successful measurements of K+ concentrations in sports drink samples were demonstrated by comparing K+ concentration values from K+-sensor to those of using a commercial K+-meter.
Keywords:Screen printing;Potassium ion;Potentiometric ion sensor;Ion-selective membrane;Electrochemistry
- Yoon JH, Hong SB, Yun SO, Lee SJ, Lee TJ, Lee KG, Choi BG, J. Colloid Interface Sci., 490, 53 (2017)
- Yoon JH, Kim KH, Bae NH, Sim GS, Oh YJ, Lee SJ, Lee TJ, Lee KG, Choi BG, J. Colloid Interface Sci., 508, 167 (2017)
- Cuartero M, Crespo GA, Curr. Opin. Electrochem., 10, 98 (2018)
- Parrilla M, Cuartero M, Crespo GA, TrAc Trends Anal. Chem., 10, 303 (2019)
- Cuartero M, Parrilla M, Crespo GA, Sensors, 19, 363 (2019)
- Jiang C, Yao Y, Cai Y, Ping J, Sens. Actuators B-Chem., 283, 284 (2019)
- Hu J, Zou XU, Stein A, Buhlmann P, Anal. Chem., 86, 7111 (2014)
- Jaworska E, Lewandowski W, Mieczkowski J, Maksymiuk K, Michalska A, Talanta, 97, 414 (2012)
- Hernandez R, Rju J, Bobacka J, Valles C, Jimenez P, Benito AM, Maser WK, Rius FX, J. Phys. Chem. C, 116, 22570 (2012)
- Bobacka J, Ivaska A, Lewenstam A, Chem. Rev., 108(2), 329 (2008)
- Hu J, stein A, Buhlmann P, Trends Anal. Chem., 76, 102 (2016)
- Michalska A, Electroanalysis, 24, 1253 (2012)
- Tehrani F, Gastelum MB, Sheth K, Karajic A, Yin L, Kumar R, Soto F, Kim J, Wang J, Barton S, Mueller M, Wang J, Adv. Mater. Technol., 4, 190016 (2019)
- Bian J, Zhou L, Wan X, Zhu C, Yang B, Huang Y, Adv. Electron. Mater., 5, 218009 (2019)
- Arapov K, Rubingh E, Abbel R, Laven J, de With G, Friedrich H, Adv. Funct. Mater., 26(4), 586 (2016)
- Hyun WJ, Secor EB, Hersam MC, Frisbie CD, Francis LF, Adv. Mater., 27, 109 (2014)
- Bellani S, Petroni E, Del Rio Castillo AE, Curreli N, Garcia BM, Nunez RO, Prato M, Bonaccorso F, Adv. Funct. Mater., 29, 180765 (2019)
- Park HJ, Yoon JH, Lee KG, Choi BG, Nano Converg., 6, 9 (2019)
- Chu Z, Peng J, Jin W, Sens. Actuators B-Chem., 243, 919 (2017)
- Bonaccorso F, Bartolotta A, Coleman JN, Backes C, Adv. Mater., 28(29), 6136 (2016)
- Hu G, Kang J, Ng LW, Zhu X, Howe RCT, Jones CG, Hersam MC, Hasan T, Chem. Soc. Rev., 47, 3265 (2018)
- Macca C, Electroanalysis, 15, 997 (2003)
- Umezawa Y, Buhlmann P, Umezawa K, Tohda K, Amemiya S, Pure Appl. Chem., 72, 1851 (2000)