화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.30, No.6, 737-741, December, 2019
스크린 프린팅 기반 저가형의 플렉서블 칼륨 이온 센서 제조 및 이의 전기화학적 특성
Fabrication of Low-cost and Flexible Potassium Ion Sensors based on Screen Printing and Their Electrochemical Characteristics
E-mail:
초록
본 연구에서는 스크린 프린팅 공정을 이용하여 저렴하고 유연한 칼륨 이온(K+) 센서를 제작하였다. 전도성 잉크의 균일한 코팅은 주사 전자 현미경 및 광학 현미경 측정에 의해 입증되었다. K+ 센서는 높은 감도, 빠른 응답 시간, 낮은 검출 한계를 보여주었다. 제조된 K+ 센서의 감도는 기계적으로 구부러진 상태에도 여전히 유지되었다. 히스테리시스 효과가 없는 우수한 반복성과 우수한 장기 안정성이 K+ 센서의 전기화학적 특성 분석에서 관찰되었다. 또한, K+ 센서는 다른 간섭 양이온이 존재하는 경우에도 정확하게 K+ 농도를 측정 할 수 있어 우수한 선택성을 증명하였다. 또한, 실제스포츠 음료 샘플에서 K+ 농도의 성공적인 측정은 K+ 센서의 K+ 농도 값과 상용 K+ 미터를 비교하여 증명되었다.
A low-cost and flexible potassium ion (K+) sensor was fabricated through a screen-printed process. Uniform and conformal coating of conductive inks was verified by scanning electron microscopy and optical microscopy measurements. The K+-sensors showed a high sensitivity, fast response time, and low detection limit. The sensitivity of K+-sensor was similar to that of both mechanically normal and bent states. The K+-sensor exhibited a good reproducibility with no hysteresis effect and excellent long term stability. In addition, the K+-sensor showed an excellent selectivity for K+ concentrations in the presence of other interfering cation ions. Successful measurements of K+ concentrations in sports drink samples were demonstrated by comparing K+ concentration values from K+-sensor to those of using a commercial K+-meter.
  1. Yoon JH, Hong SB, Yun SO, Lee SJ, Lee TJ, Lee KG, Choi BG, J. Colloid Interface Sci., 490, 53 (2017)
  2. Yoon JH, Kim KH, Bae NH, Sim GS, Oh YJ, Lee SJ, Lee TJ, Lee KG, Choi BG, J. Colloid Interface Sci., 508, 167 (2017)
  3. Cuartero M, Crespo GA, Curr. Opin. Electrochem., 10, 98 (2018)
  4. Parrilla M, Cuartero M, Crespo GA, TrAc Trends Anal. Chem., 10, 303 (2019)
  5. Cuartero M, Parrilla M, Crespo GA, Sensors, 19, 363 (2019)
  6. Jiang C, Yao Y, Cai Y, Ping J, Sens. Actuators B-Chem., 283, 284 (2019)
  7. Hu J, Zou XU, Stein A, Buhlmann P, Anal. Chem., 86, 7111 (2014)
  8. Jaworska E, Lewandowski W, Mieczkowski J, Maksymiuk K, Michalska A, Talanta, 97, 414 (2012)
  9. Hernandez R, Rju J, Bobacka J, Valles C, Jimenez P, Benito AM, Maser WK, Rius FX, J. Phys. Chem. C, 116, 22570 (2012)
  10. Bobacka J, Ivaska A, Lewenstam A, Chem. Rev., 108(2), 329 (2008)
  11. Hu J, stein A, Buhlmann P, Trends Anal. Chem., 76, 102 (2016)
  12. Michalska A, Electroanalysis, 24, 1253 (2012)
  13. Tehrani F, Gastelum MB, Sheth K, Karajic A, Yin L, Kumar R, Soto F, Kim J, Wang J, Barton S, Mueller M, Wang J, Adv. Mater. Technol., 4, 190016 (2019)
  14. Bian J, Zhou L, Wan X, Zhu C, Yang B, Huang Y, Adv. Electron. Mater., 5, 218009 (2019)
  15. Arapov K, Rubingh E, Abbel R, Laven J, de With G, Friedrich H, Adv. Funct. Mater., 26(4), 586 (2016)
  16. Hyun WJ, Secor EB, Hersam MC, Frisbie CD, Francis LF, Adv. Mater., 27, 109 (2014)
  17. Bellani S, Petroni E, Del Rio Castillo AE, Curreli N, Garcia BM, Nunez RO, Prato M, Bonaccorso F, Adv. Funct. Mater., 29, 180765 (2019)
  18. Park HJ, Yoon JH, Lee KG, Choi BG, Nano Converg., 6, 9 (2019)
  19. Chu Z, Peng J, Jin W, Sens. Actuators B-Chem., 243, 919 (2017)
  20. Bonaccorso F, Bartolotta A, Coleman JN, Backes C, Adv. Mater., 28(29), 6136 (2016)
  21. Hu G, Kang J, Ng LW, Zhu X, Howe RCT, Jones CG, Hersam MC, Hasan T, Chem. Soc. Rev., 47, 3265 (2018)
  22. Macca C, Electroanalysis, 15, 997 (2003)
  23. Umezawa Y, Buhlmann P, Umezawa K, Tohda K, Amemiya S, Pure Appl. Chem., 72, 1851 (2000)