화학공학소재연구정보센터
Journal of the American Ceramic Society, Vol.102, No.12, 7065-7070, 2019
Effective ionic transport in AgI-based Ge(Ga)-Sb-S chalcogenide glasses
AgI-based Ge-Sb-S, Ga-Sb-S, and Ge-Ga-Sb-S chalcogenide glasses were designed and prepared by melt-quenching, thereafter their thermal properties and conductive performance were comparatively investigated on the basis of their composition-induced network structures. Glass transition in each sample was examined by DSC measurements. Results showed that the samples containing Ge had a higher thermal stability than the Ga-Sb-S-AgI sample, and the Ge-Sb-S-AgI sample obtained had the highest conductivity ion. Raman spectrum analysis was performed, and the results indicated that the [GeS4-xIx] structural units and [SbS3-xIx] pyramids in the matrix produced effective ion transport channel for dissolved conductive Ag+ ions. In the matrix containing Ga, the [Ga(Ge)S4-xIx] structure was consumed by part of [S3Ga-GaS3] ethane-like units, which had no contribution to the ion transition framework. The study provided the directions for composition and structure configuration control in effective conductive chalcogenide glasses.