Journal of the American Chemical Society, Vol.141, No.41, 16222-16226, 2019
Complete Stereoinversion of L-Tryptophan by a Fungal Single-Module Nonribosomal Peptide Synthetase
Single-module nonribosomal peptide synthetases (NRPSs) and NRPS-like enzymes activate and transform carboxylic acids in both primary and secondary metabolism and are of great interest due to their biocatalytic potentials. The single-module NRPS IvoA is essential for fungal pigment biosynthesis. Here, we show that IvoA catalyzes ATP-dependent unidirectional stereo inversion of L-tryptophan to D-tryptophan with complete conversion. While the stereoinversion is catalyzed by the epimerization (E) domain, the terminal condensation (C) domain stereoselectively hydrolyzes D-tryptophanyl-S-phosphopantetheine thioester and thus represents a noncanonical C domain function. Using IvoA, we demonstrate a biocatalytic stereoinversion/deracemization route to access a variety of substituted D-tryptophan analogs in high enantiomeric excess.