화학공학소재연구정보센터
Journal of the American Chemical Society, Vol.141, No.40, 15963-15971, 2019
Lewis Pairs as Highly Tunable Dynamic Cross-Links in Transient Polymer Networks
Classical Lewis pairs (LPs) between unhindered electron-poor Lewis acids (LAs) and electron-rich Lewis bases (LBs) present an overlooked motif with tremendous potential as dynamic cross-links in transient polymer networks (TPNs) for self-healing and stimuli-responsive applications. We demonstrate that simple and intuitive matching of weak/strong organoborane LA and amine LB pairs offers access to a large set of binding equilibrium constants, K-eq, that span similar to 6 orders and dissociation rate constants, k(diss), that span similar to 7 orders of magnitude. The implementation in polystyrene (PS)/polydimethylsiloxane (PDMS) blends results in dynamically cross-linked networks with bulk thermomechanical properties that are directly correlated with the strength and kinetic parameters for the LP interactions. The LP dynamic cross-link design is highly versatile and broadly applicable to different polymer architectures as demonstrated in the formation of reprocessable elastomers from Lewis base-decorated high molecular weight PDMS in combination with Lewis acid-decorated PS when reinforced with fumed silica as a filler.