화학공학소재연구정보센터
Journal of the American Chemical Society, Vol.141, No.32, 12663-12672, 2019
X-ray and UV Dual Photochromism, Thermochromism, Electrochromism, and Amine-Selective Chemochromism in an Anderson-like Zn-7 Cluster-Based 7-Fold Interpenetrated Framework
Smart materials are highly desirable over the recent decade due to the growing demand of complicated nature. Stable stimuli-responsive smart materials exhibit widespread potential for applications in smart windows, sensors, separators, chemical valves, and release platforms but are rare. Despite being good candidates, viologen-based multifunctional smart materials are still a challenging task for chemists. To obtain such materials, the judicious strategy is to introduce polynuclear metal-carboxylate clusters as electron donors into a stable framework to increase chromic sensitivity. Toward this endeavor, we have synthesized a novel viologen-based polymer with a unique Anderson-like metal-carboxylate cluster, [Zn-7(bpybc)(3)(o-BDC)(6)]center dot 2NO(3)center dot 6H(2)O (bpybc = 1,1'-bis (4- carboxyphenyl)-4,4' -bipyridinium, o-BDC = o-benzenedicarboylic acid) (1), which is a particular 7-fold interpenetrated framework with a 3D pcu network in which bpybc ligand as the linker and Zn7O30C12 as the second building unit (Zn7SBU) were used as 6-connected nodes. More importantly, it shows excellent chromic behavior in response to multiple external stimuli especially soft X-ray and UV dual light, temperature, electricity, and organic amines, which stand out in the viologen- based polymers. Interestingly, the coloration process of 1 from "core" to "edge" is observed upon heating at the appropriate temperature, which has not yet been found in other reported thermochromic materials. Of particular interest for 1 is the couple of quaternary stimuli-sensitive abilities because it simultaneously meets the following conditions: (i) the capability of withstanding high light, higher temperature, extreme pH, and other harsh conditions; and (ii) the high sensitivity to external stimuli keeping away from photodegradation, thermal relaxation, side reactions, and so on. To be noted, 1 has high thermal stability and chemical stability, which are excellent advantages as smart materials. To further develop possible practical utilization, 1 has been doped into the polymer matrixes to construct a hybrid film, which not only keeps the response to external stimuli but also significantly improves the repeatability of the photochromic process, indicating that a new smart device with multi-stimuli-responsive functions will emerge successively in the future.