화학공학소재연구정보센터
Journal of the Electrochemical Society, Vol.166, No.14, A3162-A3167, 2019
Inter-Particle Electronic and Ionic Modifications of the Ternary Ni-Co-Mn Oxide for Efficient and Stable Lithium Storage
A combined electronic and ionic interparticular modification strategy is designed for the improvement of lithium storage in the layer structured ternary Ni-Co-Mn oxide (LiNi0.6Co0.2Mn0.2O2) in the form of spherical particles. In this design, a thin layer of the ion conducting polypropylene carbonate is applied to wrap the individual oxide particles for three purposes: (1) prevention of direct stacking and packing between oxide particles that will otherwise impede or block ions from accessing all the surface of the oxide particles, (2) provision of additional ionic pathways between the oxide particles, and (3) stabilization of the oxide particles during lithium storage and release. The design includes also the use of nitrogen doped carbon nanotubes for electronic connection between the polymer coated individual spheres of the layered nickel-rich LiNi0.6Co0.2Mn0.2O2. According to the physicochemical and electrochemical characterizations, and laboratory battery tests, it can be concluded that the LiNi0.6Co0.2Mn0.2O2 composite has a unique porous structure that is assembled by the polymer coated ternary oxide microspheres and the nitrogen-doped carbon nanotube networks. Significant improvements are achieved in both the ionic and electronic conductivities (double or more increase), and in discharge specific capacity (201.3 mAh.g(-1) at 0.1 C, improved by 13.28% compared to the non-modified LiNi0.6Co0.2Mn0.2O2), rate performance and cycling stability (94.40% in capacity retention after 300 cycles at 1.0 C). (C) The Author(s) 2019. Published by ECS.