화학공학소재연구정보센터
Solar Energy, Vol.188, 1111-1117, 2019
Uniaxially aligned microwire networks for flexible transparent electrodes using a novel electrospinning set-up
The present work, reports on combination of precise positioning ability of 3D printers with near field electro spinning (NFES) as a low-cost and scalable approach to generate well-aligned, evenly distributed microfiber mask upon flexible substrates coated with metal thin film. Using a combination of annealing thermal treatment and the wet chemical etching of metal layer a flexible transparent electrode is prepared. Using this high speed and large-area printing technique we can overcome the drawbacks of conventional electrospinning such as fiber structural inhomogeneity, random orientation, and non-reproducible results. In addition, the application of more complicated and expensive methods such as lithography or e-beam lithography or nanoimprint lithography can be avoided using this technique. The most important advantage of the reported fabrication method relative to electro-spinning process is the ability to have a special control on the distribution pattern of the electrodes on the surface which can lead to better control over the ratio of conductivity and transparency of the surface.