화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.37, No.1, 72-79, January, 2020
Molecular investigation of amine performance in the carbon capture process: Least squares support vector machine approach
E-mail:
The growing threat of global warming has raised more attention towards carbon capture. Current amine plants used for carbon removal suffer from great costs inflicted by high energy demand of the solvent regeneration step. Recently, looking for amines with proper performance in reduced temperatures has been the subject of many researches. Clearly, conducting these researches without any criterion and based only on trial and error wastes large amounts of money and time; thus, it is highly needed that the effect of different amine structural parameters be studied on the amine’s cyclic capacity. Quantitative structure property relationship (QSPR) provides an effective method for predicting amines capacity for CO2 absorption. In this work, density functional theory (DFT) was employed for optimization of the molecular geometries, and linear and nonlinear models based on parameters related to the molecular structure are presented. The value of the square of the correlation coefficient (R2) for the MLR and SVM models are 0.894 and 0.973, respectively. Developed models can be used as a criterion for amine selection. Reliability and high predictability of the models are confirmed based on statistical tests. Moreover, mechanistic interpretation of models for better understanding of the reaction mechanism of carbon capture was discussed.
  1. Weekly average atmospheric CO2 by the Mauna Loa Observatory. Available: http://www.esrl.noaa.gov/gmd/ccgg/trends/weekly.html.
  2. Van der Hoeven M, CO2 emissions from fuel combustion-highlights, IEA Statistics (2014).
  3. Puxty G, Rowland R, Allport A, Yang Q, Bown M, Burns R, Maeder M, Attalla M, Environ. Sci. Technol., 43, 6427 (2009)
  4. Wang Z, Fang MX, Pan YL, Yan SP, Luo ZY, Chem. Eng. Sci., 93, 238 (2013)
  5. Karadas F, Atilhan M, Aparicio S, Energy Fuels, 24, 5817 (2010)
  6. Jiang KQ, Li KK, Yu H, Feron PHM, Chem. Eng. J., 347, 334 (2018)
  7. Oh SY, Yun S, Kim JK, Appl. Energy, 216, 311 (2018)
  8. Zhao B, Liu FZ, Cui Z, Liu CJ, Yue HR, Tang SY, Liu YY, Lu HF, Liang B, Appl. Energy, 185, 362 (2017)
  9. Cousins A, Wardhaugh LT, Feron PHM, Int. J. Greenhouse Gas Control, 5, 605 (2011)
  10. Garcia-Abuin A, Gomez-Diaz D, Navaza JM, Fuel, 135, 191 (2014)
  11. Puxty G, Conway W, Yang Q, Bennett R, Fernandes D, Pearson P, Maher D, Feron P, Int. J. Greenhouse Gas Control, 83, 11 (2019)
  12. Murai S, Daigo M, Kato Y, Maesawa Y, Muramatsu T, Saito S, Energy Procedia, 63, 1933 (2014)
  13. Zhang JF, Misch R, Tan YD, Agar DW, Chem. Eng. Technol., 34(9), 1481 (2011)
  14. Zhang Z, Li Y, Zhang W, Wang J, Soltanian MR, Olabi AG, Renew. Sust. Energ. Rev., 98, 179 (2018)
  15. Chakraborty AK, Astarita G, Bischoff KB, Chem. Eng. Sci., 41, 997 (1986)
  16. Sartori G, Savage DW, Ind. Eng. Chem. Fundam., 22, 239 (1983)
  17. Singh P, Niederer JP, Versteeg GF, Int. J. Greenhouse Gas Control, 1, 5 (2007)
  18. Singh P, Versteeg GF, Process Saf. Environ. Prot., 86, 347 (2008)
  19. Ghaslani D, Gorji ZE, Gorji AE, Riahi S, Chem. Eng. Res. Des., 120, 15 (2017)
  20. Gorji AE, Gorji ZE, Riahi S, Korean J. Chem. Eng., 34(5), 1405 (2017)
  21. Berhanu WM, Pillai GG, Oliferenko AA, Katritzky AR, ChemPlusChem, 77, 507 (2012)
  22. Momeni M, Riahi S, J. Nat. Gas Sci. Eng., 21, 442 (2014)
  23. Momeni M, Riahi S, Int. J. Greenhouse Gas Control, 42, 157 (2015)
  24. Rezaei B, Riahi S, J. Nat. Gas Sci. Eng., 33, 388 (2016)
  25. Suykens JAK, Least squares support vector machines, World Scientific (2002).
  26. Mehraein I, Riahi S, J. Mol. Liq., 225, 521 (2017)
  27. Cramer CJ, Bickelhaupt FM, Angew. Chem.-Int. Edit., 42, 381 (2003)
  28. Frisch MJ, Nielsen AB, Frisch A, Gaussian 98: Gaussian Incorporated (1998).
  29. Todeschini R, Consonni V, Mauri A, Pavan M, DRAGON version 6, Talete srl, Milan, Italy (2011).
  30. Gray RM, Entropy and information theory, Springer Science & Business Media (2011).
  31. Topliss JG, Costello RJ, J. Med. Chem., 15, 1066 (1972)
  32. Topliss JG, Edwards RP, J. Med. Chem., 22, 1238 (1979)
  33. Barysz M, Jashari G, Lall RS, Srivastava VK, Trinajstic N, Stud. Phys. Theor. Chem., 28, 222 (1983)
  34. Balaban AT, Ciubotariu D, Medeleanu M, AAPG BullJ. Chem. Inf. Comput. Sci., 31, 517 (1991)
  35. Todeschini R, Consonni V, Molecular Descriptors for Chemoinformatics, John Wiley & Sons, 41 (2009).
  36. Ghose AK, Crippen GM, J. Comput. Chem., 7, 565 (1986)
  37. Golbraikh A, Tropsha A, Mol. Diver., 5, 231 (2000)
  38. Tropsha A, Gramatica P, Gombar V, QSAR Comb. Sci., 22, 69 (2003)
  39. Jaworska J, Nikolova-Jeliazkova N, Aldenberg T, ATLA-NOTTINGHAM, 33, 445 (2005)
  40. Gangarapu S, Marcelis AT, Zuilhof H, ChemphysChem, 14, 3936 (2013)
  41. Da Silva EF, Svendsen HF, Int. J. Greenhouse Gas Control, 1, 151 (2007)