- Previous Article
- Next Article
- Table of Contents
Korean Journal of Chemical Engineering, Vol.37, No.1, 184-187, January, 2020
Electrochemical characteristics of high-capacity Mg/V2O5 hybrid batteries with Mg-Li dual salt electrolytes
E-mail:
Mg-Li hybrid cells are constructed and evaluated using a V2O5 positive electrode, a Mg metal negative electrode, and Mg-Li dual salt electrolytes. When a crystalline V2O5 (c-V2O5) and an Al current collector are used, side reactions can occur even at the upper voltage limit of 2.4V (vs. Mg/Mg2+). However, when an amorphous V2O5 (a-V2O5) is used with a Ti current collector, the side reactions are greatly reduced and the cycle performance is improved. The discharge capacity and Coulombic efficiency at the second cycle are 187 mA h g-1 and 94.9%, respectively. a-V2O5 is more electrochemically stable than c-V2O5, the Mg/a-V2O5 cell shows a discharge voltage of ~1.5V and a specific capacity of 148 mA h g-1 even after 20 cycles. Therefore, the a-V2O5 is a potential host material for Mg-Li hybrid batteries.
- Besenhard JO, Winter M, ChemphysChem, 3, 155 (2002)
- Tarascon JM, Armand M, Nature, 414, 359 (2001)
- Yoo HD, Shterenberg I, Gofer Y, Gershinsky G, Pour N, Aurbach D, Energy Environ. Sci., 6, 2265 (2013)
- Aurbach D, Lu Z, Schechter A, Gofer Y, Gizbar H, Turgeman R, Cohen Y, Moshkovich M, Levi E, Nature, 407, 724 (2000)
- Muldoon J, Bucur CB, Gregory T, Chem. Rev., 114(23), 11683 (2014)
- Mao M, Gao T, Hou S, Wang C, Chem. Soc. Rev., 47, 8804 (2018)
- Su S, Huang Z, NuLi Y, Tuerxun F, Yang J, Wang J, Chem. Commun., 51, 2641 (2015)
- Cho JH, Aykol M, Kim S, Ha JH, Wolverton C, Chung KY, Kim KB, Cho BW, J. Am. Chem. Soc., 136(46), 16116 (2014)
- Gao T, Han F, Zhu Y, Suo L, Luo C, Xu K, Wang C, Adv. Eng. Mater., 5, 140157 (2014)
- Cabello M, Nacimiento F, Alcantara R, Lavela P, Ortiz G, Tirado JL, J. Electrochem. Soc., 163(13), A2781 (2016)
- Pan W, Liu X, Miao X, Yang J, Wang J, Nuli Y, Hirano SI, J. Solid State Electrochem., 19, 3347 (2015)
- Miao Q, NuLi Y, Wang N, Yang J, Wang J, Hirano SI, RSC Adv., 6, 3231 (2016)
- Cen Y, Li S, Zhou Y, Cai X, Wang X, Xiang Q, Hu BB, Yu DM, Liu YP, Chen CG, J. Electrochem. Soc., 166(8), A1660 (2019)
- Li T, Qin AQ, Wang HT, Wu MY, Zhang YY, Zhang YJ, Zhang DH, Xu F, Electrochim. Acta, 263, 168 (2018)
- Zhang Y, Xie JJ, Han YL, Li CL, Adv. Funct. Mater., 25(47), 7300 (2015)
- Zhang Y, Shen J, Li X, Chen Z, Cao SA, Li T, Xu F, Phys. Chem. Chem. Phys., 21, 20269 (2019)
- Cheng Y, Chang HJ, Dong H, Choi D, Sprenkle VL, Liu J, Yao Y, Li G, J. Mater. Res., 31, 3125 (2016)
- Le DB, Passerini S, Tipton AL, Owens BB, Smyrl WH, J. Electrochem. Soc., 142(6), L102 (1995)
- Huang X, Rui XH, Hng HH, Yan QY, Part. Part. Syst. Charact., 32(3), 276 (2015)
- Liu X, Zeng J, Yang H, Zhou K, Pan D, RSC Adv., 8, 4014 (2018)
- Tang H, Peng Z, Wu L, Xiong F, Pei C, An Q, Mai L, Electrochem. Energy Rev., 1, 169 (2018)
- Arthur TS, Kato K, Germain J, Guo J, Glans PA, Liu YS, Holmes D, Fan X, Mizuno F, Chem. Commun., 51, 15657 (2015)
- Kim D, Ryu JH, Electron. Mater. Lett., 15, 415 (2019)
- Wang Y, Wang C, Yi X, Hu Y, Wang L, Ma L, Zhu G, Chen T, Jin Z, Energy Storage Mater., 23, 741 (2019)
- Ichitsubo T, Okamoto S, Kawaguchi T, Kumagai Y, Oba F, Yagi S, Goto N, Doi T, Matsubara E, J. Mater. Chem. A, 3, 10188 (2015)
- Chae OB, Kim J, Park I, Jeong H, Ku JH, Ryu JH, Kang K, Oh SM, Chem. Mater., 26, 5874 (2014)
- Ku JH, Ryu JH, Kim SH, Han OH, Oh SM, Adv. Funct. Mater., 22(17), 3658 (2012)
- Kim TA, Kim JH, Kim MG, Oh SM, J. Electrochem. Soc., 150(7), A985 (2003)
- Deivanayagam R, Ingram BJ, Shahbazian-Yassar R, Energy Storage Mater., 21, 136 (2019)
- Iwakura C, Fukumoto Y, Inoue H, Ohashi S, Kobayashi S, Tada H, Abe M, J. Power Sources, 68(2), 301 (1997)
- Myung ST, Hitoshi Y, Sun YK, J. Mater. Chem., 21, 9891 (2011)
- Ha SY, Lee YW, Woo SW, Koo B, Kim JS, Cho J, Lee KT, Choi NS, ACS Appl. Mater. Interfaces, 6, 4063 (2014)
- Pan BF, Huang JH, Sa NY, Brombosz SM, Vaughey JT, Zhang L, Burrell AK, Zhang ZC, Liao C, J. Electrochem. Soc., 163(8), A1672 (2016)