화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.29, No.12, 764-773, December, 2019
Effect of the Calcination Temperature and Li(I) Doping on Ethanol Sensing Properties in p-Type CuO Thin Films
E-mail:
The gas response characteristic toward C2H5OH has been demonstrated in terms of copper-vacancy concentration, hole density, and microstructural factors for undoped/Li(I)-doped CuO thin films prepared by sol-gel method. For the films, both concentrations of intrinsic copper vacancies and electronic holes decrease with increasing calcination temperature from 400 to 500 to 600 °C. Li(I) doping into CuO leads to the reduction of copper-vacancy concentration and the enhancement of hole density. The increase of calcination temperature or Li(I) doping concentration in the film increases both optical band gap energy and Cu2p binding energy, which are characterized by UV-vis-NIR and X-ray photoelectron spectroscopy, respectively. The overall hole density of the film is determined by the offset effect of intrinsic and extrinsic hole densities, which depend on the calcination temperature and the Li(I) doping amount, respectively. The apparent resistance of the film is determined by the concentration of the structural defects such as copper vacancies, Li(I) dopants, and grain boundaries, as well as by the hole density. As a result, it is found that the gas response value of the film sensor is directly proportional to the apparent sensor resistance.
  1. Zhou X, Lee S, Xu ZC, Yoon J, Chem. Rev., 115(15), 7944 (2015)
  2. Righettoni M, Amann A, Pratsinis SE, Mater. Today, 18, 163 (2015)
  3. Barsan N, Koziej D, Weimar U, Sens. Actuators B-Chem., 121, 18 (2007)
  4. Choi YH, Kim DH, Hong SH, Sens. Actuators B-Chem., 243, 262 (2017)
  5. Alagdal IA, West AR, J. Mater. Chem. C, 4, 4770 (2016)
  6. Natile MM, Ponzoni A, Concina I, Glisenti A, Chem. Mater., 26, 1505 (2014)
  7. Lee JH, Sens. Actuators B-Chem., 140, 319 (2009)
  8. Korotcenkov G, Mater. Sci. Eng. B-Solid State Mater. Adv. Technol., 139, 1 (2007)
  9. Batzill M, Diebold U, Prog. Surf. Sci., 79, 47 (2005)
  10. Ahn MW, Park KS, Heo JH, Park JG, Kim DW, Choi KJ, Lee JH, Hong SH, Appl. Phys. Lett., 93, 263103 (2008)
  11. Maeng S, Kim SW, Lee DH, Moon SE, Kim KC, Maiti A, ACS Appl. Mater. Interfaces, 6, 357 (2014)
  12. Tong B, Deng Z, Xu B, Meng G, Shao J, Liu H, Dai T, Shan X, Dong W, Wang S, Zhou S, Tao R, Fang X, ACS Appl. Mater. Interfaces, 10, 34727 (2018)
  13. Choi YH, Kim DH, Hong SH, Hong KS, Sens. Actuators B-Chem., 178, 395 (2013)
  14. Choi YH, Kim DH, Hong SH, ACS Appl. Mater. Interfaces, 10, 14901 (2018)
  15. Cruccolini A, Narducci R, Palombari R, Sens. Actuators B-Chem., 98, 227 (2004)
  16. Jeong YK, Choi GM, J. Phys. Chem. Solids, 57, 81 (1996)
  17. Kim HJ, Lee JH, Sens. Actuators B-Chem., 192, 607 (2014)
  18. Zheng XG, Yamada H, Scanderbeg DJ, Maple MB, Xu CN, Phys. Rev. B, 67, 214516 (2003)
  19. Suda S, Fujitsu S, Koumoto K, Yanagida H, Jpn. J. Appl. Phys., 31, 2488 (1992)
  20. Yoshida N, Naito T, Fujishiro H, Jpn. J. Appl. Phys., 52, 031102 (1992)
  21. Zheng XG, Yamada H, Scanderbeg DJ, Maple MB, Xu CN, Phys. Rev. B, 67, 214516 (2003)
  22. Peng Y, Zhang Z, Pham TV, Zhao Y, Wu P, Wang J, J. Appl. Phys., 111, 103708 (2012)
  23. Goldstein EA, Gur TM, Mitchell RE, Corrosion Sci., 99, 53 (2015)
  24. Wang Y, Miska P, Pilloud D, Horwat D, Mucklich F, Pierson JF, J. Appl. Phys., 115, 073505 (2014)
  25. Burstein E, Phys. Rev., 93, 632 (1954)
  26. Moss TS, Proc. Phys. Soc., B67, 775 (1954)
  27. Chusuei CC, Brookshier MA, Goodman DW, Langmuir, 15(8), 2806 (1999)
  28. Choi YH, Kim DH, Hong SH, Sens. Actuators B-Chem., 268, 129 (2018)
  29. National Institute of Standards and Technology (NIST), NIST X-ray Photoelectron Spectroscopy Database. From http://srdata.nist.gov/xps/, 2012, Retrieved September 1, 2019.
  30. Kamimura S, Murakami N, Tsubota T, Ohno T, Appl. Catal. B: Environ., 174, 471 (2015)
  31. Chiang CY, Shin Y, Ehrman S, J. Electrochem. Soc., 159(2), B227 (2012)
  32. Bejaoui A, Guerin J, Aguir K, Sens. Actuators B-Chem., 181, 340 (2013)